
University of São Paulo
Institute of Mathematics and Statistics

Bachelor of Computer Science

Folding FrodoPIR

Private Information Retrieval with
optimization

Luiza Barros Reis Soezima

Final Essay

mac 499 — Capstone Project

Supervisor: Prof Dr. Hilder Vitor Lima Pereira

Co-supervisor: Prof. Dr. Alfredo Goldman

São Paulo

2024

The content of this work is published under the CC BY 4.0 license
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

To everyone that believed in me
and supported me in this journey.

i

Acknowldgement

Scientists love mysteries; They love not knowing

— Lawrence Krauss

There’s real poetry in the real world; Science is the poetry of reality

— Richard Dawkins

First, I would like to thank Alfredo Goldman for being my mentor during my bachelor,

for always supporting my ideas and continuously pushing me to new opportunities and

new challenges and for opening the doors for the Masters at Université Grenoble Alpes.

I would also like to thank Hilder Vitor for being a great supervisor and support me

throughout the research and work related to not only to this project but also related to

my growth in cryptologic research.

Second, I would like to thank Sofia Celi, Arantxa Zapico, Daniel Escudero, Fernando

Virdia, Octavio Perez, Francisco Rodríguez-Henríquez and all the Criptolatinos community

for being my role model and motivate me everyday to follow my dream of being a cryp-

tographer. I would also like to thank Alex Davidson, Leah Namisa Rosenbloom, Pierrick

Meaux and many other researchers for the insightful conversations and orientations.

Third, I would like to thank the entire Instituto de Matemática e Estatística da Univer-

sidade de São Paulo (IME-USP). All the professors, colleagues and employees for making

these years in the Bachelor of Computer Science the best ones in my life. I wish to remark

a few professors that made my time here greater: Routo Terada, Carlinhos, Carlos Hitoshi

and Renata Wassermann.

Now, most importantly, I thank with all my heart to my family for being comprehen-

sive and supportive of all of my choices, and for never giving up on me after so many

years of study.

Without any of you, I would not be able to achieve this. Thank you.

Resumo

Luiza Barros Reis Soezima. Folding FrodoPIR: Recuperação de informações priva-
das com otimização. Monografia (Bacharelado). Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2024.

Recuperar informações de bancos de dados é uma atividade constante na rotina diária. Concomitante-

mente, a preocupação com a privacidade, especialmente no caso de dados sensíveis, desenvolve um problema

paralelo. Protocolos de Recuperação de Informações (Private Information Retrieval - PIR) permitem a um

usuário fazer o download de uma mensagem desejada de um conjunto de mensagens armazenadas em um

banco de dados, sem revelar o índice da mensagem desejada para os bancos de dados.

Em outras palavras, PIR é um protocolo no qual, de um lado, um servidor possivelmente não confiável

mantém um banco de dados público 𝐷𝐵 com 𝑁 registros. Por outro lado, um cliente deseja consultar o

registro 𝑖 ∈ {0⋯𝑁 − 1}, sem permitir que o servidor descubra o item consultado que ele está procurando (e,

consequentemente, descubra o valor 𝑣 associado ao 𝑖 que ele está interessado). Uma solução ingênua envolve o

cliente fazer o download de todo o𝐷𝐵, mas isso pode ser caro: o objetivo do PIR é tanto preservar a privacidade

quanto ser mais eficiente do que o custo total de baixar todo o 𝐷𝐵. Existem muitas soluções propostas para

este problema, e neste Trabalho de Conclusão de Curso, exploraremos aquelas que utilizam a Criptografia

Completamente Homomórfica (Fully Homomorphic Encryption - FHE) como primitiva criptográfica.

Palavras-chave: Recuperação de Informação Privada. Protocolos Criptográficos. Criptografia Homomór-

fica Aplicada.

Abstract

Luiza Barros Reis Soezima. Folding FrodoPIR: Private Information Retrieval with
optimization. Capstone Project Report (Bachelor). Institute of Mathematics and Statis-

tics, University of São Paulo, São Paulo, 2024.

Retrieving information from databases pulls a constant activity on the daily routine, concurrently, its

privacy concern when it comes to sensitive data develop a parallel problem. Private information retrieval

(PIR) is a privacy protocol that allows a user to download a required message from a set of messages stored

in a database without revealing the index of the required message to the databases.

In other words, PIR is protocol in which from one side, a possibly untrusted server holds a public database

𝐷𝐵 with 𝑁 records. On the other side, a client wants to query for record 𝑖 ∈ {0⋯𝑁 − 1}, without letting the

server learn the queried item they are looking up (and, hence, learning the value 𝑣 associated with 𝑖 they

are interested in). A naive solution involves the client locally downloading the whole 𝐷𝐵, but that can be

expensive: the goal of PIR is to both preserve privacy and be more efficient than the total cost of downloading

the whole 𝐷𝐵. There are many proposed solutions for this problem, and in this Capstone Project, we will

explore the ones that uses Fully Homomorphic Encryption (FHE) as cryptographic primitive.

Keywords: Private Information Retrieval. Cryptographic Protocols. Applied Homomorphic Encryption.

vii

List of Figures

1.1 An example of euclidean lattice1 . 7

1.2 An example of a fundamental parallelepiped (half-open), for a lattice L,

generated by the vectors v 1 and v 2 . 8

1.3 An example of the SVP problem (basis vectors in blue, shortest vector in

red)2 . 9

1.4 An example of the CVP problem (basis vectors in blue, external vector in

green, closest vector in red)3 . 10

4.1 Private Information Retrieval Protocol. 27

List of Tables

6.1 Detailed Operations in FFPIR . 51

6.2 Client and Server Costs for FFPIR . 52

6.3 Amortized Costs for FFPIR . 52

6.4 Big-O Costs for FFPIR . 53

7.1 Comparison Between Frodo and FFPIR 56

7.2 Timing and Communication Complexities of FrodoPIR and FFPIR 57

1 Image from (Wikipedia contributors, 2024a)
2 Image from (Wikipedia contributors, 2024b)
3 Image from (Wikipedia contributors, 2024b)

viii

List of Programs

B.1 Server Preprocessing. 69

B.2 Client Preprocessing. 69

B.3 Query Generation. 70

B.4 Server Response. 70

B.5 Client Decryption. 70

ix

Contents

Introduction 1

1 Preliminaries 5

1.1 Cryptography . 5

1.1.1 Goals of Cryptography . 5

1.1.2 Modern Cryptography: Symmetric and Asymmetric Cryptography 6

1.2 Relevant Mathematical Concepts . 6

1.2.1 Lattices . 7

1.2.2 Shortest Vector Problem (SVP) 9

1.2.3 Closest Vector Problem (CVP) . 10

1.2.4 Decisional Composite Residuosity Assumption (DCRA) 11

1.3 Hardness of Computational Problems in Cryptography 11

1.3.1 Considerations about NP-Hardness 12

1.3.2 Classical Cryptographic Problems 12

1.3.3 Lattice-Based Problems . 13

1.3.4 Comparison Between Lattice-Based and Classical Problems . . . 13

2 Quantum Camputation and Post-Quantum Cryptography 15

2.1 Quantum Computation . 15

2.1.1 Qubit . 15

2.2 Impact of Quantum Computing on Classical Cryptography 16

2.3 Post-Quantum Cryptography . 16

3 Cryptographic Primitives 19

3.1 Learning With Errors (LWE) . 19

3.2 Ring Learning With Errors (RLWE) . 20

3.3 Homomorphic Encryption . 20

3.3.1 Paillier Cryptosystem . 20

3.3.2 Fully Homomorphic Encryption (FHE) 21

x

3.3.3 Fully Homomorphic Encryption Schemes 22

4 Cryptographic Protocols 27

4.1 Private Information Retrieval . 27

4.2 Informational Theoretical Private Information Retrieval 28

4.3 Computational Private Information Retrieval 29

4.4 Stateless Private Information Retrieval 30

4.5 Stateful Private Information Retrieval . 31

5 Previous works 33

5.1 XPIR: Private Information Retrieval for Everyone (Aguilar-Melchor

et al., 2014) . 33

5.1.1 Core Idea . 33

5.1.2 Theoretical Contributions . 34

5.1.3 Challenges Addressed . 34

5.1.4 Relevance to This Work . 35

5.2 SealPIR: PIR with compressed queries and amortized query processing

(Angel et al., 2018) . 35

5.2.1 Core Idea . 35

5.2.2 Theoretical Contributions . 36

5.2.3 Challenges Addressed . 36

5.2.4 Relevance to This Work . 37

5.3 Single-Server Private Information Retrieval with Sublinear Amortized

Time (Corrigan-Gibbs, Henzinger, et al., 2022) 37

5.3.1 Core Idea . 37

5.3.2 Theoretical Contributions . 38

5.3.3 Challenges Addressed . 38

5.3.4 Real World Applications . 39

5.3.5 Relevance to This Work . 39

5.4 FrodoPIR: Simple, Scalable, Single-Server Private Information Retrieval

(Davidson et al., 2022) . 39

5.4.1 Core Idea . 40

5.4.2 Theoretical Contributions . 40

5.4.3 Challenges Addressed . 41

5.4.4 Relevance to This Work . 41

5.5 SimplePIR - One Server for the Price of Two: Simple and Fast Single-Server

Private Information Retrieval (Henzinger et al., 2023) 41

5.5.1 Core Idea . 42

xi

5.5.2 Theoretical Contributions . 42

5.5.3 Challenges Addressed . 43

5.5.4 Relevance to This work . 43

6 FoldingFrodo 45

6.1 FoldingFrodo with Paillier . 45

6.1.1 Notations . 45

6.1.2 Cryptographic Setup . 46

6.1.3 Preprocessing Phase . 46

6.1.4 Online Phase . 47

6.1.5 Correctness . 48

6.1.6 Correctness of the Server Response (FFPIR.respond) 48

6.1.7 Correctness of the Client Postprocessing (FFPIR.process) . . . 49

6.2 Algorithms and Costs . 50

6.2.1 Notations . 50

6.2.2 Costs and Complexities . 51

6.2.3 Client and Server Costs . 52

6.2.4 Amortized and Big-O Costs . 52

7 Results and Discussion 55

7.1 Amortization and Parameter Explanation 55

7.1.1 Parameters . 55

7.1.2 Amortization Considerations . 55

7.1.3 Comparison Methodology . 56

7.1.4 Comparative Analysis . 57

7.2 Comparison of Function Costs Between FrodoPIR and FFPIR 57

7.2.1 Explanation of Function Comparisons 58

7.3 Discussion . 58

8 Conclusion 61

8.1 Summary of Contributions . 61

8.2 Key Findings . 62

8.3 Challenges and Limitations . 62

8.4 Future Work . 62

8.5 Concluding Remarks . 63

Annexes

xii

A An overview of the FrodoPIR protocol 65

A.1 FrodoPIR Scheme . 65

A.1.1 Setup . 66

A.1.2 Preprocessing phase . 66

A.1.3 Online phase . 67

B Pseudocodes for FoldingFrodoPIR 69

References 73

1

Introduction

The world we live in can be seen as a place where data is the most valuable asset. The
amount of data generated every day is increasing exponentially, and the need to store,
process and analyze this data is becoming a task each day more relevant and repetitive.
However, sometimes the type of data that is being manipulated must not always available to
everyone, and sometimes it is necessary to access, process and analyze it without revealing
anything about the queries being done to the server. A few examples of this situation could
be medical data, where the patient’s privacy is a must, or even a situation in which a user
would like to search for a specific news without letting the server know exactly what topic
the user searched for. This is where Private Information Retrieval (PIR) comes in.

Private Information Retrieval (PIR) is a protocol firstly proposed by (B. Chor et al., 1995)
in which a user aims to retrieve data from a public database without revealing anything
about the queries being done to the server. PIR construction involves an untrusted server
that holds a public database 𝐷𝐵 with 𝑛 records and a client that wants to query for record
𝑖 ∈ {0⋯𝑛 − 1}, without the server learning the index 𝑖 they are querying for.

A simple and naive solution involves the client locally downloading the whole 𝐷𝐵, but
that can be expensive, just think about a situation in which a person may want to query a
1 MB data over a database of size 100GB. The goal of PIR is to both preserve privacy and
be more efficient than the total cost of downloading the whole 𝐷𝐵.

This protocol has an large list of applications, from anonymous communications at
(Mittal et al., 2011) to safe browsing at (Kogan and Corrigan-Gibbs, 2021). On a broader
real life set of applications, we can explore a situation in which a user would like to search
for a specific news without letting the server know exactly what topic the user searched
for, or even a situation in which a user would like to browse something on a public system
and wishes to have protection of the qualitative information of the data being searched.

Private Information Retrieval can be divided in two types of protocols: Information
Theoretic (Beimel and Ishai, 2001) and Computational Theoretic (Benny Chor and Gilboa,
1997). The first one does not cores the solution into the hardness to solve a cryptographic
problem and the computation used to do it, hence most solutions rely in multi-server
systems. On the other hand, the second one emphasizes on the query encoding while
manipulating records and consequently considering the limitation of a computational
power to solve problems. Along with the types of the PIR schemes, there are the stateless
ones in which the client does not store any data in order to launch queries and the stateful
ones in which the server provides a digest used as a preprocessing phase of amortization.
These definitions will be discussed in more details in the next chapters.

2

INTRODUCTION

The computational cost associated with the Computational Private Information Re-
trieval (CPIR) is one of the bottleneck that barriers most of the practical solutions to the
PIR problems. This means that if, for instace, a doctor desires to fetch a one single piece
of information from a patient in a hospital database, the hospital servers would have to
perform some work and tasks proportional to the total length of all of the patients in the
hospital databas. This setup ends up being utterly costful not only on the theoretical point
of view, but also on the practical point of view. On a more precise way, what this means is
that the linear server-side cost is the a problem to explore in PIR schemes in theory. This is
confirmmed by the nowadays approach that still keeps sublinear, or even polylogarithmic
costs in the database size, this is explained at (Corrigan-Gibbs and Kogan, 2020).

On the verge of reducing the client side costs, the idea of preprocessing on the server
phase generated schemes where the server respond to queries in sublinear time relative to
the database size, which was first presente by Amos Beimel, Yuval Ishai and Tal Malkin at
(Beimel, Ishai, and Malkin, 2000). On their approach, the client sends a request to the
servers in an offline phase, yet, this still kept a lot of server-side storage.

In order to avoid the linear cost on the database size, most of the efficient solutions
proposed for this problem are based on Fully Homomorphic Encryption (FHE) (Aguilar-
Melchor et al., 2014; Angel et al., 2018; Mughees et al., 2021; Davidson et al., 2022;
Henzinger et al., 2022; Menon and Wu, 2022; Celi and Davidson, 2024), specifically the
Ring-Learning With Errors(RLWE) and the Learning With Errors(LWE) assumptions in
order to lower amortized server time and client storage (Corrigan-Gibbs, Henzinger,
et al., 2022).

A remark about the cryptographic primitive used in this work is that Lattice-based
cryptography, particularly schemes built on the Learning with Errors (LWE) and Ring
Learning with Errors (RLWE) problems, is widely regarded as post-quantum secure due
to the inherent hardness of the underlying mathematical problems even in the presence
of quantum computers.

This work will approach the LWE version of the CPIR, specifically the protocol devel-
oped by Alex Davidson, Gonçalo Pestaña and Sofía Celi at (Davidson et al., 2022).

Objectives and Methodology

Objectives

The primary objective of this work is to explore and optimize the computational as-
pects of Private Information Retrieval (PIR) protocols, specifically focusing on the FrodoPIR
protocol (Davidson et al., 2022), which is based on the Learning with Errors (LWE) as-
sumption. This exploration involves both theoretical analysis and practical implementation
to identify and address bottlenecks in computational efficiency. The specific objectives
of this thesis are as follows:

1. To investigate the Cryptographic Primitives used in the Private Information Retrieval
(PIR) protocols, specifically the lattice base ones, such as Learning with Errors (LWE).

INTRODUCTION

3

2. To analyze the computational costs associated with the FrodoPIR protocol and identify
potential areas for optimization.

3. To understand and analyze the cryptographic foundations and operational mecha-
nisms of the FrodoPIR protocol.

4. To identify opportunities for optimization, both theoretically and practically, to
reduce computational overhead.

5. To design optimizations aimed at reducing query response time and storage require-
ments while maintaining correctness and security.

6. To evaluate the optimized protocol, comparing it against the baseline and existing
state-of-the-art solutions.

Methodology

The methodology follows a structured approach, ensuring both rigor and clarity in
addressing the objectives. The process is outlined below:

1. Literature Review and Theoretical Analysis

The thesis begins with an extensive review of existing PIR protocols, particularly com-
putational PIR schemes based on the LWE assumption. The focus will be on understanding
the theoretical construction of FrodoPIR, including its reliance on cryptographic primitives
such as LWE, its preprocessing phase, and its query-response mechanism. Special attention
will be given to the role of preprocessing in amortizing computational costs and the use
of homomorphic encryption to enable efficient query handling.

This involves a detailed analysis of bottlenecks in the current FrodoPIR protocol, such
as the computational costs of matrix-vector multiplications, the impact of noise growth in
LWE-based operations, and the storage requirements for server-side preprocessing data.

2. Understanding the FrodoPIR (Davidson et al., 2022) Protocol

The FrodoPIR protocol will be explored, as well as existing Stateful PIR Protocols. The
goal is to understand the protocol’s cryptographic foundations, as well as comprehend
the operational mechanisms that enable private information retrieval and the existent
bottlenecks to explore in the protocol.

This will establish a reference point for evaluating the effectiveness of subsequent
optimizations.

3. Design of Optimizations

Based on insights gained from the theoretical analysis and baseline implementation,
this work will propose optimizations to the FrodoPIR protocol. These optimizations will
focus on:

4

INTRODUCTION

- Reducing computational overhead: Techniques such as optimized matrix rep-
resentation and arithmetic operations will be explored to accelerate matrix-vector
multiplications.

- Preprocessing strategies: Enhancing the server-side preprocessing phase to mini-
mize query processing time without significantly increasing storage requirements.

- Efficient use of cryptographic primitives: Investigating alternative homomor-
phic encryption schemes (e.g., Paillier encryption (Paillier, 1999)) to streamline
computations.

- Amortizing costs: Proposing mechanisms to distribute computational costs across
multiple queries.

4. Result Analysis and Conclusion

Finally, the results of the experimental evaluation will be analyzed to assess the effec-
tiveness of the proposed optimizations. The analysis will include:

- A comparison of the optimized protocol with the baseline in terms of computational
efficiency and scalability.

- An evaluation of the trade-offs introduced by the optimizations, particularly in terms
of storage and communication costs.

- Suggestions for future research directions to further advance the field of computa-
tional PIR.

5

Chapter 1

Preliminaries

This work builds upon cryptographic protocols that require a strong understanding
of the fundamental principles of cryptography, cryptographic primitives, and the mathe-
matical problems that ensure their security. In this chapter, we introduce key concepts
from cryptography, cryptographic protocols, and the mathematical foundations essential
for understanding the work. Each section builds upon the previous, starting from general
cryptographic principles and progressing to specific mathematical problems that are
considered important to the security of the systems discussed afterward.

1.1 Cryptography

Cryptography is the science of securing communication and information through
mathematical techniques (Stoneburner et al., 2004; Ham, 2021). Its primary goals are
to ensure confidentiality, integrity, authenticity, and non-repudiation in the exchange of
information. Cryptographic systems are broadly categorized into symmetric and asym-
metric schemes, both of which rely on computationally hard mathematical problems to
provide security guarantees. On top of these two types of cryptography, we also have
the post-quantum cryptography, which is a new field that aims to develop cryptographic
schemes that are secure against quantum adversaries.1

1.1.1 Goals of Cryptography

The primary objectives of cryptography can be summarized in four main principles
as are well discussed in (Stoneburner et al., 2004; Ham, 2021):

- Confidentiality: Ensuring that information is only accessible to authorized parties.

1 A quantum adversary refers to a theoretical entity capable of leveraging the principles of quantum computing
to perform computations and attacks. Such an adversary is modeled to exploit the unique capabilities
of quantum mechanics, including superposition and entanglement, to solve problems more efficiently
than classical adversaries, particularly in the context of breaking cryptographic schemes. For example, a
quantum adversary could use Shor’s algorithm (Shor, 1994) to factorize large integers or compute discrete
logarithms in polynomial time, potentially compromising classical cryptographic systems.

6

1 | PRELIMINARIES

- Integrity: Protecting information from unauthorized modification or corruption.

- Authentication: Verifying the identity of the entities involved in communication.

- Non-repudiation: Preventing entities from denying their participation in a com-
munication or transaction.

These goals form the foundation of cryptographic protocols and serve as benchmarks
for evaluating the security and robustness of cryptographic systems.

1.1.2 Modern Cryptography: Symmetric and Asymmetric

Cryptography

Modern cryptography is divided into two broad categories: symmetric and asymmetric
cryptography. These paradigms differ in their approach to encryption, decryption, and
key management, each offering unique advantages and trade-offs.

Definition 1 (Symmetric Cryptography). A cryptographic scheme is symmetric if encryption
𝐸𝑘 and decryption 𝐷𝑘 use the same secret key 𝑘. Formally:

∀𝑃 ∈ , 𝑘 ∈ , 𝐷𝑘(𝐸𝑘(𝑃)) = 𝑃

Symmetric encryption is computationally efficient and well-suited for applications
requiring high-speed data encryption, such as AES (Advanced Encryption Standard)
(Daemen and Rijmen, 1999) and DES (Data Encryption Standard) (Standards and (NIST),
1977). However, the need for secure key exchange between parties poses a challenge in
distributed systems.

Definition 2 (Asymmetric Cryptography). A cryptographic scheme is asymmetric if it uses
a pair of keys (𝑘𝑝𝑢𝑏 , 𝑘𝑝𝑟𝑖𝑣), where:

𝐷𝑘𝑝𝑟𝑖𝑣(𝐸𝑘𝑝𝑢𝑏 (𝑃)) = 𝑃 and 𝐸𝑘𝑝𝑢𝑏 (𝐷𝑘𝑝𝑟𝑖𝑣(𝑃)) = 𝑃.

Asymmetric encryption, such as RSA (Rivest et al., 1978) and ECC (Elliptic Curve
Cryptography) (Koblitz, 1994), eliminates the need for a shared secret key, making it
ideal for secure communication over untrusted networks. However, it is computationally
more intensive than symmetric cryptography.

Both paradigms are essential in modern cryptographic systems and are often used
together in hybrid protocols, given each of them has strengths in different applications:
symmetric encryption provides high efficiency for securing large amounts of data, while
asymmetric encryption ensures secure key exchange and digital signatures.

1.2 Relevant Mathematical Concepts

Many cryptographic systems rely on hard mathematical problems to ensure their
security. Lattice-based cryptography, in particular, has gained prominence for its resistance
to quantum attacks. To understand the cryptographic schemes discussed in this work, it

1.2 | RELEVANT MATHEMATICAL CONCEPTS

7

is essential to introduce some key mathematical constructs, including lattices and their
associated problems (Peikert, 2015), such as the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP).

1.2.1 Lattices

Lattices (view 1.1) provide a geometric framework for understanding many crypto-
graphic problems. They are discrete structures in ℝ𝑛 formed by integer linear combinations
of basis vectors. In other words, a lattice is a discrete subgroup of ℝ𝑛 formed by all integer
linear combinations of a set of linearly independent vectors, called the basis vectors.

Definition 3 (Lattice). A lattice  is a discrete subgroup of ℝ𝑛, defined as:

 =

{

𝐱 =
𝑛

∑
𝑖=1
𝑐𝑖𝐛𝑖 ∣ 𝑐𝑖 ∈ ℤ, 𝐛𝑖 ∈ ℝ𝑛

}

,

where {𝐛1, 𝐛2, … , 𝐛𝑛} are linearly independent vectors called the basis vectors. Note that n
vectors on ℝ𝑛 defining a lattice is a full-rank lattice. In general, we have 𝑚 basis vectors in
ℝ𝑛, with 𝑚 ≤ 𝑛

Figure 1.1: An example of euclidean latticea

a Image from (Wikipedia contributors, 2024a)

Definition 4 (Dimension and Representation of a Lattice). The dimension or rank of
a lattice , denoted 𝑛, is the number of linearly independent basis vectors {𝐛1, 𝐛2, … , 𝐛𝑛}
spanning the lattice.

Each point 𝐱 ∈  can be uniquely represented as a linear combination of the basis vectors:

𝐱 =
𝑛

∑
𝑖=1
𝑐𝑖𝐛𝑖, where 𝑐𝑖 ∈ ℤ.

8

1 | PRELIMINARIES

The basis vectors 𝐛1, 𝐛2, … , 𝐛𝑛 define the geometric and algebraic structure of the
lattice. They span a fundamental parallelepiped(view 1.2), which is the region formed
by all linear combinations of the basis vectors with coefficients in [0, 1). The volume
of this parallelepiped, called the determinant of the lattice, is an invariant of the lattice,
independent of the choice of basis.

a

Figure 1.2: An example of a fundamental parallelepiped (half-open), for a lattice L, generated by the
vectors v 1 and v 2

a Image from (Robins, 2021)

An important property of lattices is that their structure remains invariant under any
change of basis. While the basis vectors themselves are not unique, any basis for the
same lattice generates the same set of points. This means that different sets of linearly
independent vectors can describe the same lattice, provided they span the same discrete
subset of ℝ𝑛. For example, if 𝐁 = [𝐛1, 𝐛2, … , 𝐛𝑛] is a basis for a lattice , then 𝐁′ = 𝐁𝐔
is also a valid basis for , where 𝐔 is an 𝑛 × 𝑛 unimodular matrix (i.e., a matrix with
integer entries and determinant ±1).

The invariance of the lattice under basis transformations is a crucial property in
lattice-based cryptography. It allows algorithms to operate on different bases of the same
lattice without changing the cryptographic properties. This flexibility also underpins the
mathematical hardness of problems like the Shortest Vector Problem (SVP) and the Closest
Vector Problem (CVP), as finding a "good" basis for a lattice (e.g., one with short, nearly
orthogonal vectors) is computationally difficult.

1.2 | RELEVANT MATHEMATICAL CONCEPTS

9

1.2.2 Shortest Vector Problem (SVP)

The Shortest Vector Problem (SVP) is a fundamental computational problem in lattice
theory. Given a lattice  defined by a basis {𝐛1, 𝐛2, … , 𝐛𝑛} in ℝ𝑛, the goal of SVP is to
find the shortest non-zero vector in the lattice with respect to a given norm, typically
the Euclidean norm.

Definition 5 (Shortest Vector Problem (SVP)). Given a lattice , the Shortest Vector Problem
asks to find the shortest non-zero vector 𝐯 ∈  under a given norm ‖ ⋅ ‖:

𝐯 = arg min
𝐮∈⧵{𝟎}

‖𝐮‖.

The shortest vector 𝐯 represents the smallest distance from the origin to any lattice
point, excluding the origin itself (view 1.3). The Euclidean norm ‖𝐯‖ of a vector 𝐯 =
(𝑣1, 𝑣2, … , 𝑣𝑛) is given by:

‖𝐯‖ =
√
𝑣21 + 𝑣22 + ⋯ + 𝑣2𝑛.

Figure 1.3: An example of the SVP problem (basis vectors in blue, shortest vector in red)a

a Image from (Wikipedia contributors, 2024b)

SVP is widely studied in cryptography because its computational hardness serves as the
basis for many lattice-based cryptographic schemes. Finding the exact solution to SVP is
known to be NP-hard in general (Micciancio and Goldwasser, 2002), and approximating
it within small polynomial factors is also believed to be computationally intractable (Ajtai,
1996; Haviv and Regev, 2007). This difficulty persists even under quantum computing
models, making SVP a foundation of post-quantum cryptography.

The challenge of solving SVP lies in the fact that the lattice basis vectors provided as
input are typically not the shortest or the most orthogonal. A "good" basis with shorter,
nearly orthogonal vectors would make SVP easier to solve, but obtaining such a basis
is itself computationally hard.

10

1 | PRELIMINARIES

In cryptographic applications, the hardness of SVP ensures the security of protocols
by making it infeasible for adversaries to recover secret information encoded in lattice
structures.

1.2.3 Closest Vector Problem (CVP)

The Closest Vector Problem (CVP) is another fundamental problem in lattice theory.
Given a lattice  defined by a basis {𝐛1, 𝐛2, … , 𝐛𝑛} in ℝ𝑛 and a target vector 𝐭 ∈ ℝ𝑛, the
goal of CVP is to find the lattice vector 𝐯 ∈  that is closest to the target vector 𝐭 with
respect to a given norm.

Definition 6 (Closest Vector Problem (CVP)). Given a lattice  and a target vector 𝐭 ∈ ℝ𝑛,
the Closest Vector Problem asks to find 𝐯 ∈  such that:

𝐯 = argmin
𝐮∈

‖𝐭 − 𝐮‖.

The distance ‖𝐭 − 𝐯‖ represents the minimum Euclidean distance between the target
vector 𝐭 and any lattice point in . Unlike SVP, which focuses on the intrinsic properties of
the lattice, CVP involves an external target vector and measures proximity to lattice points.

Figure 1.4: An example of the CVP problem (basis vectors in blue, external vector in green, closest
vector in red)a

a Image from (Wikipedia contributors, 2024b)

CVP (view 1.4) is known to be at least as hard as SVP (Micciancio and Goldwasser,
2002), and in many cases, it is considered more computationally challenging. Like SVP,
CVP is NP-hard and remains difficult to approximate within polynomial factors. Solving
CVP is particularly challenging when the lattice basis vectors are not orthogonal, as this
makes it harder to distinguish the closest lattice point to the target.

For the cryptographic contexts, CVP is significant because many lattice-based cryp-
tographic constructions reduce to instances of CVP. And yhe computational hardness
of CVP underpins the security of lattice-based cryptography, ensuring resilience against
both classical and quantum attacks.

1.3 | HARDNESS OF COMPUTATIONAL PROBLEMS IN CRYPTOGRAPHY

11

1.2.4 Decisional Composite Residuosity Assumption (DCRA)

The Decisional Composite Residuosity Assumption (DCRA) is a foundational hardness
assumption in number theory and cryptography. It underpins the security of Paillier
cryptosystem ((Paillier, 1999)) by asserting the computational infeasibility of deciding
whether a given element is an 𝑛-residue modulo 𝑛2.

Let 𝑛 = 𝑝 ⋅ 𝑞 be a product of two large prime numbers 𝑝 and 𝑞, where 𝑝 ≠ 𝑞, and
consider the ring ℤ∗

𝑛2 , the set of integers modulo 𝑛2 that are coprime to 𝑛2. Define the
subgroup 𝐺𝑛 ⊆ ℤ∗

𝑛2 as:

𝐺𝑛 = {𝑥 ∈ ℤ∗
𝑛2 ∣ 𝑥 = (1 + 𝑛)𝑟 ⋅ 𝑢𝑛 mod 𝑛2, 𝑟 ∈ ℤ𝑛, 𝑢 ∈ ℤ∗

𝑛}.

The subgroup 𝐺𝑛 contains the so-called 𝑛-residues modulo 𝑛2, which are elements
of ℤ∗

𝑛2 that can be expressed in this form.

Definition 7 (Decisional Composite Residuosity Assumption (DCRA)). Let 𝑛 = 𝑝 ⋅ 𝑞 be a
composite number with 𝑝 and 𝑞 as large primes. The DCRA asserts that, given 𝑥 ∈ ℤ∗

𝑛2 , it is
computationally infeasible to decide whether 𝑥 is an 𝑛-residue modulo 𝑛2 without knowledge
of the factorization of 𝑛.

The Decisional Composite Residuosity Assumption states that for a randomly chosen
𝑥 ∈ ℤ∗

𝑛2 , it is computationally infeasible to decide whether 𝑥 ∈ 𝐺𝑛 without knowledge of
the factorization of 𝑛. In other words, no efficient algorithm exists that can distinguish
between the following two distributions:

1. 𝑥 chosen uniformly at random from 𝐺𝑛.

2. 𝑥 chosen uniformly at random from ℤ∗
𝑛2 .

Note that the DCRA is closely related to the Integer Factorization Problem, which
involves finding the prime factors 𝑝 and 𝑞 of 𝑛 = 𝑝 ⋅ 𝑞. Knowledge of the factorization
of 𝑛 directly allows efficient membership testing for 𝐺𝑛. Conversely, solving the DCRA
efficiently could compromise the factorization of 𝑛. Hence, the security of the Paillier
cryptosystem (Paillier, 1999) , which relies on DCRA, is equivalent to the hardness of
integer factorization in practice.

1.3 Hardness of Computational Problems in

Cryptography

Another important topic to clarify is the hardness of computational problems in
cryptography, as well as how they correlate to each other. This is what defines the core of
the security of cryptographic protocols and gives directions to which approach to take
when designing a new cryptographic system. The security of cryptographic protocols
relies heavily on the hardness of underlying mathematical problems. These problems are
designed to be computationally infeasible for adversaries to solve within a reasonable
amount of time.

12

1 | PRELIMINARIES

This section gives a brief overview of the hardness of lattice-based problems and com-
pares them to classical cryptographic problems, such as the Discrete Logarithm Problem
(DLP) and Integer Factorization.

1.3.1 Considerations about NP-Hardness

In computational complexity theory, a problem is considered NP-hard if solving it
efficiently would allow us to solve all problems in the complexity class NP efficiently.
Formally, NP-hardness means that every problem in NP can be reduced to the given
problem in polynomial time.

- NP (Nondeterministic Polynomial Time): This class consists of decision prob-
lems for which a solution can be verified in polynomial time by a deterministic
Turing machine. For example, given a solution to the Boolean satisfiability problem
(SAT), it is straightforward to check its correctness in polynomial time.

- NP-hard Problems: A problem is NP-hard if it is at least as hard as the hardest
problems in NP. It does not necessarily need to be in NP itself (i.e., it may not have a
solution that can be verified in polynomial time).

- Significance: NP-hard problems are widely regarded as computationally infeasible
to solve in the general case, as no polynomial-time algorithms are known for them.

In cryptography, computationally hard problems are fundamental for designing secure
systems. The security of cryptographic schemes often relies on the assumption that solving
these problems efficiently is infeasible for adversaries. While some problems, such as
Integer Factorization or the GapSVP problem (this problem be further mentioned), are
believed to be computationally intractable, they are not proven to be NP-hard. Instead,
their hardness assumptions are based on the lack of efficient algorithms to solve them
within classical or quantum frameworks.

1.3.2 Classical Cryptographic Problems

Before the advent of quantum computing, classical cryptographic systems relied on
the hardness of problems such as:

- Discrete Logarithm Problem (DLP): Given a group 𝐺 and elements 𝑔, ℎ ∈ 𝐺, the
problem is to find an integer 𝑥 such that 𝑔𝑥 = ℎ. The hardness of DLP underpins the
security of protocols like Diffie-Hellman and Digital Signature Algorithm (DSA).

- Integer Factorization Problem: The problem of decomposing a composite number
𝑛 into its prime factors is the basis of the RSA cryptosystem.

- Elliptic Curve Discrete Logarithm Problem (ECDLP): A variant of DLP defined
over elliptic curves, providing stronger security per bit compared to DLP.

While these problems are considered hard for classical computers, they become solvable
in polynomial time on quantum computers using algorithms such as Shor’s algorithm. This
potential vulnerability has prompted the search for post-quantum cryptographic primitives.

1.3 | HARDNESS OF COMPUTATIONAL PROBLEMS IN CRYPTOGRAPHY

13

1.3.3 Lattice-Based Problems

Lattice-based problems are at the core of post-quantum cryptography due to their
computational hardness, even in the presence of quantum adversaries. Two fundamental
problems in this domain are the Shortest Vector Problem (SVP) and the Closest Vec-
tor Problem (CVP) that were mentioned earlier, along with the Learning With Errors
(LWE) problem.

- Shortest Vector Problem (SVP): The problem of finding the shortest non-zero vec-
tor in a lattice is known to be NP-hard in the exact case and remains computationally
intractable for approximate solutions within small factors.

- Closest Vector Problem (CVP): CVP, which involves finding the lattice vector
closest to a target point, is at least as hard as SVP and is also NP-hard. Its hardness
persists even under approximate settings.

- Learning With Errors (LWE): LWE is a problem that is as hard as worst-case
instances of lattice problems like GapSVP (approximating SVP). It is computationally
hard for both classical and quantum adversaries and forms the foundation of many
lattice-based cryptographic schemes. This problem will be further discussed in the
section 32

- Ring Learning With Errors (RLWE): RLWE is a variant of LWE defined over
polynomial rings.

These problems derive their hardness from the geometric complexity of high-
dimensional lattices, where efficiently solving SVP or CVP requires exponential time
in the lattice dimension. This makes them ideal for constructing cryptosystems with
strong security guarantees.

We will explore with more details the LWE and RLWE problems in the next sections.

1.3.4 Comparison Between Lattice-Based and Classical

Problems

Lattice-based cryptography offers significant advantages in the post-quantum era:

- Problems like LWE and RLWE remain hard for quantum computers, whereas classical
problems like DLP and Integer Factorization can be efficiently solved using quantum
algorithms.

- Lattice problems are versatile and support advanced cryptographic functionalities
such as Fully Homomorphic Encryption (FHE) and Private Information Retrieval
(PIR).

- Approximate solutions to lattice problems, such as 𝛾 -SVP, provide computational
hardness even for moderate 𝛾 factors, ensuring robust security.

2 The Gap Shortest Vector Problem (GapSVP) is a decision version of the SVP, where the goal is to determine
whether the shortest vector in a given lattice is smaller than a threshold or larger than another threshold.
The problem remains computationally hard for approximation factors smaller than 2(𝑛), where 𝑛 is the
lattice dimension, under both classical and quantum settings.

15

Chapter 2

Quantum Camputation and

Post-Quantum Cryptography

This chapter provides an overview of quantum computation and its implications
for cryptography, speciall when it comes to our choices on using the Learning With
Errors(LWE) problem as a base for the cryptographic schemes on Private INformation
Retrieval.

The emergence of quantum computers poses a significant challenge to the field of
cryptography. Many widely used cryptographic protocols rely on the computational
intractability of problems like the Discrete Logarithm Problem (DLP) and Integer Factoriza-
tion, which can be solved efficiently by quantum algorithms. This section introduces the
basics of quantum computation, its implications for cryptography, and the development of
post-quantum cryptographic schemes that remain secure against quantum adversaries.

2.1 Quantum Computation

Quantum computation (Nielsen and Chuang, 2010) explores the principles of quantum
mechanics to process information. Unlike classical computers, which use binary states
(0 and 1), quantum computers use qubits, which can exist in a superposition of states.
This allows quantum computers to perform certain computations exponentially faster
than their classical counterparts.

2.1.1 Qubit

A qubit (quantum bit) is the basic unit of information in quantum computation, anal-
ogous to the classical bit. However, unlike a classical bit, which can exist only in one of
two states, |0⟩ or |1⟩, a qubit can exist in a superposition of both states simultaneously.
Mathematically, the state of a qubit is represented as:

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩,

16

2 | QUANTUM CAMPUTATION AND POST-QUANTUM CRYPTOGRAPHY

where 𝛼 and 𝛽 are complex numbers satisfying the normalization condition:

|𝛼|2 + |𝛽|2 = 1.

Here, |0⟩ and |1⟩ are the computational basis states of the qubit, and |𝛼|2 and |𝛽|2
represent the probabilities of measuring the qubit in the states |0⟩ and |1⟩, respectively.

The ability of a qubit to exist in a superposition of states is a fundamental property
that enables quantum computers to perform computations on multiple possibilities simul-
taneously, vastly increasing their computational power for specific tasks.

2.2 Impact of Quantum Computing on Classical

Cryptography

The computational power of quantum computers threatens the security of classical
cryptographic systems, as several quantum algorithms can solve problems that underpin
traditional cryptographic protocols efficiently:

- Shor’s Algorithm (Shor, 1994): This algorithm efficiently solves the Integer
Factorization problem and the Discrete Logarithm Problem in polynomial time. Con-
sequently, cryptosystems like RSA, Diffie-Hellman, and Elliptic Curve Cryptography
(ECC) (Koblitz, 1994) are vulnerable to quantum attacks.

- Grover’s Algorithm (Grover, 1996): This algorithm provides a quadratic speedup
for unstructured search problems, reducing the security of symmetric cryptographic
schemes like AES (Daemen and Rijmen, 1999) by effectively halving the key length.
For example, AES-256 provides only 128 bits of security against a quantum adversary.

These algorithms created the urgent need for cryptographic systems that could be
efficient against quantum adversaries, and after this the cryptographic community has
shifted its focus towards developing post-quantum cryptographic schemes that are secure
against quantum attacks, leading to the development of what we call post-quantum
cryptography.

2.3 Post-Quantum Cryptography

Post-quantum cryptography refers to cryptographic algorithms designed to remain
secure against both classical and quantum adversaries. These algorithms are based on
mathematical problems believed to be resistant to quantum attacks. The main classes of
post-quantum cryptographic primitives include:

- Lattice-Based Cryptography: Based on the hardness of problems like Learn-
ing With Errors (LWE) and Ring Learning With Errors (RLWE) (Peikert, 2015),
lattice-based schemes are among the most promising candidates for post-quantum
cryptography. They enable advanced functionalities such as Fully Homomorphic
Encryption (FHE) and serve as the foundation for protocols like FrodoPIR.

2.3 | POST-QUANTUM CRYPTOGRAPHY

17

- Code-Based Cryptography: Relies on the hardness of decoding random linear
codes. The McEliece (McEliece, 1978) cryptosystem is a prominent example, offering
security against quantum attacks.

- Isogeny-Based Cryptography: Uses the hardness of finding isogenies between
elliptic curves. A notable example is the SIKE(Supersingular Isogeny Key Encapsula-
tion) (J. D. Feo et al., 2019; Jao and L. D. Feo, 2011) protocol.

19

Chapter 3

Cryptographic Primitives

Cryptographic primitives are the foundational components upon which secure cryp-
tographic protocols and systems are built. They provide essential functionalities like
encryption, decryption, key exchange, and secure computation. This section describes the
cryptographic primitives relevant to this work, focusing on their mathematical definitions
and the specific needs of Folding Frodo PIR.

3.1 Learning With Errors (LWE)

The Learning With Errors (LWE) (Peikert, 2015) problem is a central cryptographic
primitive in lattice-based cryptography. It provides the mathematical foundation for con-
structing secure schemes resistant to both classical and quantum adversaries. LWE exists
in two main variants: the Search LWE and the Decisional LWE:

Definition 8 (Search LWE:). The Search LWE problem involves recovering a secret vector
𝐬 ∈ ℤ𝑛

𝑞 from a system of noisy linear equations. Formally:

Given (𝐀, 𝐛 = 𝐀𝐬 + 𝐞 mod 𝑞), recover 𝐬,

where:

- 𝐀 ∈ ℤ𝑚×𝑛
𝑞 is a public random matrix,

- 𝐛 ∈ ℤ𝑚
𝑞 is a vector of noisy linear combinations,

- 𝐞 ∈ ℤ𝑚
𝑞 is a noise vector, typically sampled from a discrete Gaussian distribution with

small variance.

Definition 9 (Decisional LWE:). The Decisional LWE problem asks whether a given vector
𝐛 ∈ ℤ𝑚

𝑞 is a noisy linear combination of the rows of 𝐀 or is uniformly random. Formally:

Given (𝐀, 𝐛), distinguish whether 𝐛 = 𝐀𝐬 + 𝐞 mod 𝑞 or 𝐛 ∼  (ℤ𝑚
𝑞),

where  (ℤ𝑚
𝑞) denotes the uniform distribution over ℤ𝑚

𝑞 .

20

3 | CRYPTOGRAPHIC PRIMITIVES

The hardness of both Search and Decisional LWE is rooted in worst-case reductions
from lattice problems such as the Shortest Vector Problem (SVP) (Regev, 2009) These
properties make LWE a versatile primitive for constructing cryptographic schemes like
Fully Homomorphic Encryption (FHE), Key Exchange, and, therefore, Private Information
Retrieval.

3.2 Ring Learning With Errors (RLWE)

The Ring Learning With Errors (RLWE) problem is an optimization of LWE, operating
over polynomial rings to achieve greater efficiency. Let 𝑅 = ℤ[𝑥]/⟨𝑓 (𝑥)⟩ be the ring of
polynomials modulo an irreducible polynomial 𝑓 (𝑥) of degree 𝑛, and let 𝑞 be a modulus.

Definition 10 (Ring Learning With Error (RLWE)). The RLWE problem is defined as:

Given (𝐚(𝑥), 𝐛(𝑥) = 𝐚(𝑥) ⋅ 𝐬(𝑥) + 𝐞(𝑥) mod 𝑞), recover 𝐬(𝑥),

where:

- 𝐚(𝑥) ∈ 𝑅𝑞 = 𝑅/𝑞𝑅 is a public random polynomial,

- 𝐬(𝑥), 𝐞(𝑥) ∈ 𝑅𝑞 are the secret and noise polynomials, respectively.

The decision variant of RLWE involves distinguishing whether 𝐛(𝑥) is of the form
above or is uniformly random in 𝑅𝑞 .

3.3 Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic primitive that allows computations
to be performed on encrypted data without the need for decryption. This property is
essential for privacy-preserving computations, as it enables secure operations on sensitive
data while maintaining confidentiality.

Homomorphic Property: For two ciphertexts 𝑐1 and 𝑐2 encrypting 𝑚1 and 𝑚2, respec-
tively, their product modulo 𝑛2 decrypts to the sum of the plaintexts:

𝑐1 ⋅ 𝑐2 mod 𝑛2 decrypts to 𝑚1 + 𝑚2 mod 𝑛.

3.3.1 Paillier Cryptosystem

The Paillier cryptosystem (Paillier, 1999) is an additive homomorphic encryption
scheme based on the Decisional Composite Residuosity Assumption (DCRA). Its key
features include the ability to add plaintexts by multiplying their ciphertexts and strong
semantic security under standard assumptions.

The setting of the Pailler can be seen as the following:

Key Operations:

3.3 | HOMOMORPHIC ENCRYPTION

21

- Key Generation: Choose two large primes 𝑝 and 𝑞, compute 𝑛 = 𝑝 ⋅ 𝑞, and set the
public key (𝑛, 𝑔) and private key 𝜆 = lcm(𝑝 − 1, 𝑞 − 1).

- Encryption: Encrypt a message 𝑚 ∈ ℤ𝑛 using the public key as:

𝑐 = 𝑔𝑚 ⋅ 𝑟𝑛 mod 𝑛2,

where 𝑟 ∈ ℤ∗
𝑛 is a random value.

- Decryption: Decrypt a ciphertext 𝑐 using the private key as:

𝑚 =
(𝑐𝜆 mod 𝑛2) − 1

𝑛
⋅ (𝑔𝜆 mod 𝑛2)−1 mod 𝑛.

3.3.2 Fully Homomorphic Encryption (FHE)

Whenever we talk about privacy-preserving computations, one might think that, to
protect our data, we just need to encrypt it and send it to the server or the cloud. In the cloud
context, the performance of search, modification and operations among datas is constant,
and naïvely, for that, one can just download the data, decrypt it, perform the operation and
encrypt it again. However, this is not secure, as the data is actually totally exposed during
the operation given that the server needs to perform operations on the encrypted data.

In order to bypass this problem, we can perform operations called homomorphic
operations, which are operations that can be performed on encrypted data without the
need of decrypting it. This is the main idea behind Fully Homomorphic Encryption (FHE),
which allows arbitrary computations on encrypted data without decryption. Therefore,
homomorphic operations are a fundamental property of cryptographic schemes for the
current context of cloud computing.

Before exploring what does Homomorphic Encryption mean, let’s first understand
what is Homomorphism of a cipher.

Definition 11 (Homomorphic Cipher). A cipher is said to be homomorphic if it satisfies
the following property:

Let ⊕ and ⊗ represent operations (e.g., addition and multiplication) defined over the
plaintext space. A cipher is homomorphic if, for any two plaintexts 𝑚1 and 𝑚2, and their
respective ciphertexts 𝑐1 = Enc(𝑚1) and 𝑐2 = Enc(𝑚2), there exists an efficient operation ⋆ in
the ciphertext space such that:

Enc(𝑚1 ⊕ 𝑚2) = 𝑐1 ⋆ 𝑐2,

where ⋆ is performed directly on 𝑐1 and 𝑐2 without knowledge of the secret key used for
encryption.

The consequence of this property is that, given the ciphertexts 𝑐1 and 𝑐2, we can
perform operations on them without the need of decrypting them. We can extent this
property to 𝑙 ∈  plaintexts, such that:

Enc(𝑚1 ⊕ 𝑚2 ⊕ … ⊕ 𝑚𝑙) = 𝑐𝑙.

22

3 | CRYPTOGRAPHIC PRIMITIVES

Fully Homomorphic Encryption (FHE) is an extension of Homomorphic Encryption
that enables secure computations over encrypted data. Unlike partially homomorphic
encryption, which supports only a single operation (e.g., addition or multiplication),
FHE supports both addition and multiplication, allowing for arbitrary computations on
encrypted data.

Definition 12 (Fully Homomorphic Encryption (FHE)). Let Enc denote the encryption
function, and⊕ and⊗ represent addition and multiplication in the plaintext space, respectively.
The scheme is Fully Homomorphic if, for any plaintexts 𝑚1, 𝑚2, … , 𝑚𝑙 and their respective
ciphertexts 𝑐𝑖 = Enc(𝑚𝑖) for 𝑖 = 1, … , 𝑙, there exist efficient operations ⋆ and ◦ in the ciphertext
space such that:

Enc(𝑚1 ⊕ 𝑚2 ⊕ … ⊕ 𝑚𝑙) = 𝑐1 ⋆ 𝑐2 ⋆ … ⋆ 𝑐𝑙,

and
Enc(𝑚1 ⊗ 𝑚2 ⊗ … ⊗ 𝑚𝑙) = 𝑐1 ◦ 𝑐2 ◦ … ◦ 𝑐𝑙.

These operations ⋆ and ◦ can be performed directly on the ciphertexts without requiring
decryption or knowledge of the secret key, ensuring the privacy of both the queries and the
processed data.

The story the the homomorphic encryption begins with Rivest, Shamir and Adleman’s
RSA (Rivest et al., 1978) back in 1977, which is a partially homomorphic encryption
scheme, as it allows only multiplication of ciphertexts. Later in 2005, Dan Boneh, Eu-Jin
Goh and Kobbi Nissim proposed at (Boneh et al., 2005) the first fully homomorphic
encryption scheme, which was based on the Learning With Errors (LWE) problem, yet
it was not practical for real-world applications, since it could only perform a limited
amount of operations.

Only in 2009, 30 years after RSA, Craig Gentry proposed at (Gentry, 2009) a fully
homomorphic encryption scheme based on ideal lattices. This scheme was the first to be
practical for real-world applications, later being optimized by several researchers, and
it is the basis for the current Homomorphic Encryption (HE), Somewhat Homomorphic
Encryption (SHE) and Fully Homomorphic Encryption (FHE) schemes. The development
of the FHE until an applicable state-of-the-art is largelly explored at (Chillotti, 2018).

3.3.3 Fully Homomorphic Encryption Schemes

There are several Fully Homomorphic Encryption (FHE) schemes, each with its own
properties and trade-offs. The most well-known FHE schemes are the BGV, FV, and DGHV
cryptosystems, each with its own set of operations and optimizations. In this section, an
overview of these schemes and their key operations will be explored:

BGV Cryptosystem

The BGV(Brakerski-Gentry-Vaikuntanathan) cryptosystem (Brakerski et al., 2014) is
a fully homomorphic encryption (FHE) scheme based on the Learning With Errors (LWE)
or Ring-LWE hardness assumption. It operates over a polynomial ring 𝑅 = ℤ[𝑋]/(𝑋𝑑 + 1)
where 𝑑 is a power of 2.

3.3 | HOMOMORPHIC ENCRYPTION

23

Definition 13 (BGV Cryptosystem). The BGV cryptosystem consists of the following key
operations:

- Key Generation: Select a secret key 𝑠 ∈ 𝑅𝑞 , where 𝑞 is a modulus, and generate public
keys as noisy polynomials.

- Encryption: To encrypt a plaintext 𝑚 ∈ 𝑅𝑡 (with 𝑡 as the plaintext modulus):

𝑐 = (𝑎, 𝑏) = (𝑎, 𝑎 ⋅ 𝑠 + 𝑒 + 𝑚 mod 𝑞),

where 𝑎 ∈ 𝑅𝑞 is uniformly random, and 𝑒 is a small error polynomial.

- Decryption: Given a ciphertext 𝑐 = (𝑎, 𝑏), decrypt as:

𝑚 = (𝑏 − 𝑎 ⋅ 𝑠) mod 𝑡.

For the Homomorphic Operations in the BGV scheme, we have:

- Addition: Ciphertexts 𝑐1 = (𝑎1, 𝑏1) and 𝑐2 = (𝑎2, 𝑏2) can be added as:

𝑐sum = (𝑎1 + 𝑎2, 𝑏1 + 𝑏2) mod 𝑞.

- Multiplication: Ciphertexts 𝑐1 and 𝑐2 can be multiplied as:

𝑐prod = (𝑎1𝑎2, 𝑎1𝑏2 + 𝑎2𝑏1, 𝑏1𝑏2),

where the result is a "noisier" ciphertext requiring modulus switching to manage
the noise growth.

What is important to notice about the BGV, is that it uses modulus switching, which
scales down the modulus 𝑞 to reduce noise while maintaining correctness.

FV Cryptosystem

The FV(Fan-Vercauteren) cryptosystem (Fan and Vercauteren, 2012) is another
FHE scheme. It operates on batched plaintexts encoded as polynomials, enabling efficient
computation on multiple data elements.1

Definition 14 (FV Cryptosystem). The FV cryptosystem is defined as follows:

- Key Generation: Generate a secret key 𝑠 ∈ 𝑅𝑞 . The public key is a pair (𝑏, 𝑎) where:

𝑏 = −(𝑎 ⋅ 𝑠 + 𝑒) mod 𝑞,

and 𝑒 is a small error polynomial.

1 Batching is a technique that allows multiple plaintexts to be packed into a single ciphertext, enabling
parallel computation on these plaintext slots. For example, in the FV scheme, plaintexts are represented
as polynomials modulo a carefully chosen cyclotomic polynomial, which provides 𝑁 plaintext slots for
batching operations.

24

3 | CRYPTOGRAPHIC PRIMITIVES

- Encryption: Encrypt a plaintext 𝑚 ∈ 𝑅𝑡 as:

𝑐 = (𝑐0, 𝑐1) = (𝑏 ⋅ 𝑢 + 𝑚 + 𝑒1, 𝑎 ⋅ 𝑢 + 𝑒2) mod 𝑞,

where 𝑢 is uniformly random in 𝑅𝑞 , and 𝑒1, 𝑒2 are error terms.

- Decryption: Given a ciphertext 𝑐 = (𝑐0, 𝑐1), compute:

𝑚 = [𝑐0 + 𝑐1 ⋅ 𝑠] mod 𝑡.

For the Homomorphic Operations in the FV scheme, we have:

- Addition: Add ciphertexts component-wise:

𝑐sum = (𝑐(1)0 + 𝑐(2)0 , 𝑐
(1)
1 + 𝑐(2)1) mod 𝑞.

- Multiplication: Multiply ciphertexts and use relinearization to reduce the size of
the resulting ciphertext:

𝑐prod = (𝑐0 ⋅ 𝑐′0, 𝑐0 ⋅ 𝑐
′
1 + 𝑐1 ⋅ 𝑐

′
0, 𝑐1 ⋅ 𝑐

′
1).

The FV cryptosystem uses rescaling to reduce the modulus and control noise growth
during homomorphic multiplications.

DGHV Cryptosystem

The DGHV (Van Dijk-Gentry-Halevi-Vaikuntanathan) cryptosystem (Dijk et al., 2010)
is one of the earliest FHE schemes designed to work over integers. Unlike lattice-based
schemes, DGHV operates on plaintexts and ciphertexts that are integers modulo a secret
key. Its simplicity makes it conceptually straightforward but less efficient than modern
schemes.

Definition 15 (DGHV Cryptosystem). The DGHV cryptosystem is defined as follows:

- Key Generation: Choose a large integer 𝑝 (the secret key) and a public modulus 𝑞.
Publish integers 𝑥𝑖 = 𝑞𝑖 ⋅ 𝑝 + 𝑟𝑖, where 𝑟𝑖 ≪ 𝑝 are small random errors.

- Encryption: Encrypt a bit 𝑚 ∈ {0, 1} as:

𝑐 = 𝑚 + 2 ⋅ 𝑟 + 𝑞 ⋅ 𝑝,

where 𝑟 is a small random value.

- Decryption: Decrypt a ciphertext 𝑐 as:

𝑚 = (𝑐 mod 𝑝) mod 2.

For the Homomorphic Operations in the DGHV scheme, we have:

3.3 | HOMOMORPHIC ENCRYPTION

25

- Addition: Add ciphertexts:
𝑐sum = 𝑐1 + 𝑐2.

- Multiplication: Multiply ciphertexts:

𝑐prod = 𝑐1 ⋅ 𝑐2.

One this that is extremelly important to underline on the DGHV scheme is that requires
bootstrapping to manage noise growth during computations, which will be explained
in the next section.

Bootstrapping in Fully Homomorphic Encryption

Bootstrapping (Gentry, 2009) is a noise management technique that refreshes cipher-
texts, enabling arbitrarily deep computations in FHE. In FHE schemes, each homomorphic
operation increases the noise in the ciphertext. Once the noise grows beyond a certain
threshold, decryption fails, or in other words, if the noise is too high, the decryption of
the ciphertext will not return the correct plaintext. Bootstrapping reduces this noise by
homomorphically decrypting a ciphertext, effectively refreshing it.

The bootstrapping process involves three main steps:

1. Encrypt the Secret Key: The encryption of the secret key 𝑠𝑘.

2. Homomorphic Decryption: Homomorphically evaluate the decryption function
𝐷(𝑐, 𝑠𝑘) over an encrypted ciphertext 𝑐 and encrypted secret key 𝑠𝑘.

3. Output Refreshed Ciphertext: The output is a refreshed ciphertext 𝑐′ with reduced
noise, which can be used for further operations.

Example: Bootstrapping in the DGHV Scheme: The DGHV cryptosystem provides
a simple example of bootstrapping on the cyphering scheme:

- Given a ciphertext 𝑐 encrypting 𝑚, the noise 𝑒 in 𝑐 is:

𝑐 = 𝑚 + 𝑡 ⋅ 𝑞 + 𝑒,

where 𝑞 is a quotient and 𝑒 is the noise.

- To bootstrap, compute the decryption homomorphically:

𝑚 = (𝑐 mod 𝑡),

using the encrypted secret key 𝑠𝑘 stored in the system.

- Re-encrypt the result 𝑚 to produce a refreshed ciphertext 𝑐′ with reduced noise.

A better understanding of bootstrapping and FHE schemes can be found in (Pereira
and Morais, 2021).

27

Chapter 4

Cryptographic Protocols

4.1 Private Information Retrieval

Private Information Retrieval (PIR) protocols enable clients to retrieve data from a
database while ensuring their query remains private. This chapter explores the foundational
concepts of PIR, its variants, and the cryptographic techniques they use. PIR schemes are
broadly categorized into Information-Theoretic Private Information Retrieval (IITPIR) and
Computational Private Information Retrieval (CPIR), based on their security assumptions.

Private Information Retrieval (PIR) is a cryptographic protocol that allows a client to
retrieve an element 𝑣𝑖 from a database 𝐷𝐵 = {𝑣0, 𝑣1, … , 𝑣𝑛−1}, where 𝑛 is the total number
of records in this database, without revealing the index 𝑖 of the desired element to the
database server. Formally:

Definition 16 (Private Information Retrieval (PIR)). Let the database be represented as a
function:

𝐷𝐵 ∶ {0, 1, … , 𝑛 − 1} →  ,

where  is the set of database records. The goal is to design an interactive protocol between a
client  and server(s)  such that:

((𝐷𝐵, 𝑄)) = 𝑣𝑖, ∀𝑖 ∈ {0, 1, … , 𝑛 − 1},

where 𝑄 is the client’s query, and (𝐷𝐵, 𝑄) is the server’s response.

Query q(i)

Response r(q(i))

Figure 4.1: Private Information Retrieval Protocol.

28

4 | CRYPTOGRAPHIC PROTOCOLS

From (Benny Chor, Goldreich, et al., 1998; Benny Chor and Gilboa, 1997; Corrigan-
Gibbs and Kogan, 2020; Beimel and Ishai, 2001), ideally, PIR protocols ensures two main
characteristics:

- Query Privacy: The server (or servers) learns no information about the client’s
query index 𝑖.

- Correctness: The client retrieves 𝑣𝑖 accurately without additional errors.

The costs of PIR protocols is measured in terms of:

- Communication Complexity: The total number of bits exchanged between the
client and server(s).

- Computation Complexity: The computational effort required by the client and
server(s) to generate and process queries.

4.2 Informational Theoretical Private Information

Retrieval

Informational Theoretical Private Information Retrieval (ITPIR) provides unconditional
query privacy by distributing the database among 𝑘 ≥ 2 non-colluding servers. Non-
collusion means that the servers do not share information about their interactions with
the client.

Definition 17 (Informational Theoretical Private Information Retrieval (ITPIR)). Assume
the database𝐷𝐵 is replicated across 𝑘 non-colluding servers 1,2, … ,𝑘. The client generates
𝑘 queries 𝑄1, 𝑄2, … , 𝑄𝑘 such that:

𝑘

∑
𝑗=1
𝑄𝑗(𝑖) = 𝑖, and 𝑄𝑗(𝑖) is uniformly random for each 𝑗 .

Each server 𝑗 independently processes its query 𝑄𝑗 and computes:

𝑅𝑗 = 𝑗(𝐷𝐵, 𝑄𝑗),

where𝑅𝑗 is the partial response from server𝑗 . The client combines all responses {𝑅1, 𝑅2, … , 𝑅𝑘}
to recover 𝑣𝑖.

The ITPIR protocol achieves the following properties and guarantees:

- Unconditional Privacy: Since each query 𝑄𝑗 is independently random and uni-
formly distributed, no single server 𝑗 can deduce the index 𝑖.

- Correctness: The summation of responses ∑𝑘
𝑗=1 𝑅𝑗 guarantees the correct recon-

struction of 𝑣𝑖.

Yet, it is important to note that ITPIR is not practical due to its high communication and
computation complexity, meaning that while ITPIR provides strong privacy guarantees,
it suffers from:

4.3 | COMPUTATIONAL PRIVATE INFORMATION RETRIEVAL

29

- High Communication Overhead: The client interacts with 𝑘 servers, requiring
significant communication.

- Replication Requirement: All 𝑘 servers must hold identical copies of the database.

(Benny Chor and Gilboa, 1997) introduced the first formal ITPIR protocols, demon-
strating the potential for unconditional privacy in multi-server settings. Their work laid the
first assumptions for the use of random splitting techniques, where the query is distributed
among servers such that no individual server gains information about the queried index.
(Benny Chor, Goldreich, et al., 1998) further refined these protocols, emphasizing the
need for replication of the database across servers. This approach ensures that each server
operates independently, preserving privacy through non-collusion.

On the verge of simplifying the ITPIR protocols, (Beimel and Ishai, 2001) presented a
unified construction of ITPIR protocols, simplifying the design by formalizing the mathe-
matical foundations of query splitting and response aggregation. Their work highlights
the trade-off between communication cost and the number of non-colluding servers.

4.3 Computational Private Information Retrieval

Computational Private Information Retrieval (CPIR) is an approach that achieves query
privacy with a single server, relying on computational hardness assumptions such as the
Learning With Errors (LWE) in order to create computationally efficient PIR protocols.

Definition 18 (Computational Private Information Retrieval). In CPIR, the database 𝐷𝐵 =
{𝑣0, 𝑣1, … , 𝑣𝑛−1} is stored on a single server  . The client uses a homomorphic encryption
scheme to generate a query 𝑄 that hides the index 𝑖.

Client Query: The client encrypts its query index 𝑖 using a public-key encryption scheme
Enc:

𝑄 = Enc𝑝𝑘(𝑖).

Server Response: The server processes the encrypted query over the database using the
homomorphic properties of the encryption scheme:

𝑅 =
𝑛−1

∑
𝑗=0
𝑣𝑗 ⋅ 𝑄[𝑗] mod 𝑛2,

where 𝑄[𝑗] = Enc𝑝𝑘(1) if 𝑗 = 𝑖, and 𝑄[𝑗] = Enc𝑝𝑘(0) otherwise.

Client Decoding: The client decrypts 𝑅 using its private key to retrieve 𝑣𝑖:

𝑣𝑖 = Dec𝑠𝑘(𝑅).

The security and efficiency of CPIR protocols can be defined as bellow:

- Query Privacy: The server cannot distinguish 𝑖 from the encrypted query 𝑄 under
the hardness of the encryption scheme (e.g., LWE or DCRA).

30

4 | CRYPTOGRAPHIC PROTOCOLS

- Correctness: The client retrieves the correct record 𝑣𝑖 without errors.

- Efficiency: CPIR reduces communication overhead compared to ITPIR but increases
computational costs due to homomorphic operations.

(Kushilevitz and Ostrovsky, 1997) introduced the first single-server CPIR scheme,
showing that replication is unnecessary if computational hardness assumptions (e.g., the
difficulty of factoring) are the basis of the system security. Later, (Gentry and Ramzan,
2005) proposed CPIR protocols with a constant communication rate, emphasizing the
use of advanced cryptographic primitives to reduce communication complexity while
maintaining privacy.

With the doors opened to efficient CPIR protocols, researchers began exploring the
trade-offs between communication and computation complexity. This led to the develop-
ment of several other works such as: (Angel et al., 2018) that introduced efficient query
compression techniques, demonstrating how amortized query processing can make CPIR
practical for large-scale databases; (Ali et al., 2019) that explored trade-offs between com-
munication and computation in CPIR, providing insights into optimizing query generation
and response evaluation and (Corrigan-Gibbs and Kogan, 2020) which contributed to
CPIR by introducing methods for sublinear online computation.

CPIR schemes reduce communication complexity compared to ITPIR but introduce
higher computational overhead due to reliance on cryptographic operations. These trade-
offs make CPIR suitable for applications where server-side computational resources are
abundant, and database replication is not an option.

4.4 Stateless Private Information Retrieval

Stateless Private Information Retrieval (Stateless PIR) refers to PIR protocols where
the server maintains no persistent state between queries. This is saying that each query is
processed independently, making these schemes simpler to implement and scalable for
large-scale deployment (very large databases for example).

In Stateless PIR, the client issues a query 𝑄 to the server for an index 𝑖, and the server
processes 𝑄 without relying on any prior knowledge or preprocessing.

Definition 19 (Stateless Private Information Retrieval). Let the database be 𝐷𝐵 =
{𝑣0, 𝑣1, … , 𝑣𝑛−1}, where 𝑛 is the number of records. The goal is for the client to retrieve 𝑣𝑖
without revealing 𝑖 to the server.

Client Query: The client generates a query 𝑄 that encodes the desired index 𝑖 in a privacy-
preserving manner. For instance, using homomorphic encryption, the query 𝑄 may take the
form:

𝑄 = Enc𝑝𝑘(𝑖),

where Enc𝑝𝑘 is a public-key encryption scheme with homomorphic properties.

4.5 | STATEFUL PRIVATE INFORMATION RETRIEVAL

31

Server Response: The server evaluates a function 𝑓 over the encrypted query 𝑄 and the
database 𝐷𝐵:

𝑅 = 𝑓 (𝑄, 𝐷𝐵),

where 𝑓 is designed to compute the encrypted result corresponding to the desired record 𝑣𝑖.
For example, using additive homomorphic encryption, the server computes:

𝑅 =
𝑛−1

∏
𝑗=0

Enc𝑝𝑘(𝑣𝑗)𝑄[𝑗] mod 𝑛2.

Client Decoding: The client decrypts the server’s response 𝑅 to recover 𝑣𝑖:

𝑣𝑖 = Dec𝑠𝑘(𝑅),

where Dec𝑠𝑘 is the decryption function using the client’s private key 𝑠𝑘.

Stateless PIR schemes have the advantages when it comes to scalability as the server
does not need to store or manage additional metadata, making the scheme suitable for
dynamic databases or large-scale systems. And is also simpler in the way that each query
is processed independently, reducing implementation complexity.

This is widely explored in works such as (Mughees et al., 2021; Corrigan-Gibbs
and Kogan, 2020) that introduced efficient Stateless PIR protocols, demonstrating the
practicality of PIR for real-world applications.

Despite their simplicity, stateless PIR schemes face certain drawbacks, such as a high
computational overhead since the server cannot perform preprocessing, each query re-
quires a full evaluation over the entire database. Also, it can be inefficient for repeated
queries, as frequent queries for similar data incur redundant computations, and Stateless
PIR, usually, has no mechanism to amortize costs.

4.5 Stateful Private Information Retrieval

Stateful Private Information Retrieval (Stateful PIR) enhances efficiency by introducing
a preprocessing phase where the server maintains auxiliary data structures or metadata to
accelerate query responses. This stateful design enables sublinear server-side computation
relative to the database size, making it particularly efficient for large-scale applications.

Definition 20 (Stateful Private Information Retrieval). In Stateful PIR, the server prepro-
cesses the database 𝐷𝐵 into auxiliary data 𝐴(𝐷𝐵) during an offline phase. This preprocessing
allows the server to answer client queries 𝑄 more efficiently in the online phase.

Preprocessing Phase: The server computes auxiliary data 𝐴(𝐷𝐵) from the database 𝐷𝐵 =
{𝑣0, 𝑣1, … , 𝑣𝑛−1}. For example:

𝐴(𝐷𝐵) = Preprocess(𝐷𝐵),

32

4 | CRYPTOGRAPHIC PROTOCOLS

where Preprocess generates structured data (e.g., compressed encodings or precomputed ho-
momorphic evaluations) that facilitates efficient query handling.

Client Query: The client generates a query 𝑄 that specifies the index 𝑖 in a privacy-
preserving manner, as in Stateless PIR. For instance:

𝑄 = Enc𝑝𝑘(𝑖).

Server Response: Using 𝐴(𝐷𝐵), the server computes the response 𝑅 more efficiently:

𝑅 = Eval(𝑓 , 𝐴(𝐷𝐵), 𝑄),

where 𝑓 is the evaluation function. For example, in schemes based on lattice cryptography,
𝐴(𝐷𝐵) might store precomputed matrix-vector products to accelerate evaluations.

Client Decoding: As in Stateless PIR, the client decrypts 𝑅 to obtain the desired record 𝑣𝑖:

𝑣𝑖 = Dec𝑠𝑘(𝑅).

Stateful PIR schemes provide several advantages over Stateless PIR. The computational
efficiency is reached through a preprocessing phase that reduces the server’s computational
cost during the online phase, enabling sublinear query evaluation times. Aditionally, it is
possible to amortize the preprocessing cost across multiple queries, making these schemes
particularly efficient for repeated queries. These benefits are explored in schemes such
as: (Aguilar-Melchor et al., 2014; Menon and Wu, 2022; Davidson et al., 2022; Patel
et al., 2018; Henzinger et al., 2023; Zhou et al., 2023)

It must be noted that the benefits of Stateful PIR come at the cost of certain trade-offs,
either from the increased Server Storage, in which the server must store auxiliary data
𝐴(𝐷𝐵), which can be significant for large databases. Or also a higher complexity of updates,
as modifications to the database 𝐷𝐵 require corresponding updates to 𝐴(𝐷𝐵), increasing
maintenance overhead. Also, the client may also have the additional communication and
computation costs to perform additional operations such as: downloading the hint 𝐴(𝐷𝐵)
and also perform more computational operations during the setup and query phases.

33

Chapter 5

Previous works

Private Information Retrieval (PIR), as previously discussed, is a widely explored area
of research in cryptography and is becoming increasingly relevant given the growing
volume of information processed daily.

Among the various objectives of new PIR implementations, two primary goals drive
much of the research: optimizing client-side performance and enhancing the system’s
ability to handle multiple queries in a single request. This includes improving the size of
individual queries and the number of queries processed per request, both of which aim
to enable scalable implementations for larger servers.

In this chapter we aim to present and examine five contributions in the field, exploring
their core ideas, theoretical basis, and relevance to my work.

5.1 XPIR: Private Information Retrieval for Everyone

(Aguilar-Melchor et al., 2014)

XPIR (Aguilar-Melchor et al., 2014) is a work by Carlos Aguilar-Melchor, Joris
Barrier, Laurent Fousse and Marc-Olivier Killijian, and it also represents a paradigm shift
in the design and practicality of single-database Computationally-Private Information
Retrieval (CPIR) schemes.

The idea bases it’s technical approach in lattice-based cryptography, and it challenges
the long-standing belief that CPIR is impractical, as proposed by Sion and Carbunar in
2007 (Sion and Carbunar, 2007).

XPIR demonstrates that with modern cryptographic tools and efficient implementations,
CPIR can achieve competitive performance while maintaining rigorous privacy guarantees.

5.1.1 Core Idea

The foundational idea behind XPIR is to utilize homomorphic encryption based on
the Ring-Learning With Errors (Ring-LWE) problem to design a CPIR scheme that is both

34

5 | PREVIOUS WORKS

efficient and secure. Homomorphic encryption enables computations to be performed
directly on encrypted data, as mentioned before in this work, and it ensures thatthe
privacy of the client’s query. It is important to remark that XPIR replaces traditional
number-theoretic constructions, such as RSA, with lattice-based approaches, significantly
improving the computational efficiency and throughput of the protocol, and what is
more noticable is that (Aguilar-Melchor et al., 2014) also opened doors for many other
LWE-based PIR schemes.

XPIR addresses the classic challenge of CPIR: ensuring that the server processes the
entire database to avoid revealing which entry the client is interested in. This ensures
that the protocol achieves the same level of privacy as downloading the entire database,
but with sublinear communication costs.

5.1.2 Theoretical Contributions

XPIR’s contributions can be summarized as follows:

- Lattice-based cPIR: By using Ring-LWE cryptography, XPIR achieves post-
quantum security and improves the practicality of CPIR schemes.

- Optimization Techniques: XPIR introduces algorithmic optimizations, including
FFT-like representations and Newton quotient pre-computation, to enhance the
efficiency of homomorphic operations.

- Efficient Implementation: The protocol demonstrates multi-gigabit processing
throughput on commodity CPUs, showcasing its practical viability in real-world
scenarios.

- Contradiction of Sion and Carbunar’s Results: XPIR disproves the widely ac-
cepted conclusion that CPIR is inherently impractical, showing that modern lattice-
based cryptography enables feasible implementations. And this is extremely relevant,
since athte tame this approach in CPIR was made, applied LWE was not as explored
as it is today.

5.1.3 Challenges Addressed

XPIR tackles several long-standing issues in CPIR:

- High Computational Overhead: Traditional CPIR schemes require the server to
perform expensive cryptographic operations over the entire database. XPIR mitigates
this overhead by leveraging the efficiency of Ring-LWE cryptography.

- Communication Costs: Unlike trivial PIR (where the entire database is sent to the
client), XPIR achieves sublinear communication costs while preserving privacy.

- Scalability: XPIR demonstrates practical performance even for large databases,
making it suitable for a wide range of applications, including private keyword
search.

5.2 | SEALPIR: PIR WITH COMPRESSED QUERIES AND AMORTIZED QUERY PROCESSING (SEALPIR)

35

5.1.4 Relevance to This Work

XPIR serves as a relevant reference for this work in several ways:

- The use of lattice-based cryptography in XPIR provides a robust framework for
designing efficient and secure PIR protocols.

- XPIR’s emphasis on practical implementations and real-world performance directly
informs the design choices in this work, particularly in developing protocols suitable
for constrained environments.

- The contradiction of Sion and Carbunar’s conclusions about CPIR’s impracticality
highlights the evolving nature of cryptographic research and the potential for modern
cryptographic tools to redefine the boundaries of feasibility.

It is worth mentioning that XPIR marks a significant milestone in the development
of CPIR schemes. By demonstrating that CPIR can be both practical and secure, it sets
a precedent for future research in the field. Its reliance on lattice-based cryptography,
along with its innovative optimizations and efficient implementation, serves as a blueprint
for this work, which aims to build on these principles to address remaining challenges
in the domain.

5.2 SealPIR: PIR with compressed queries and

amortized query processing (Angel et al., 2018)

SealPIR (Angel et al., 2018), a contribution by Sebastian Angel, Hao Chen, Kim Laine
and Srinath Setty, also builds upon the Computationally-Private Information Retrieval
(CPIR) approach by addressing one of its most significant challenges: the high computa-
tional and communication costs associated with query generation and processing.

By introducing techniques for query compression and amortized query processing,
SealPIR achieves substantial improvements over prior CPIR protocols, making it more
practical for deployment in bandwidth-limited and computationally constrained environ-
ments. Note that this is what we have been mentioning in this work as one of The main
motivation over research over optimizations in PIR.

5.2.1 Core Idea

SealPIR refines and extends the XPIR protocol Aguilar-Melchor et al., 2014. While
XPIR uses a lattice-based cryptosystem to enable efficient homomorphic operations, it
suffers from high network costs due to the size of client queries. In SealPIR, on the other
hand, the authors introduce two complementary techniques to address this bottleneck,
defining a new techical sight of the issues in PIR:

1. Compressed Queries: SealPIR employs a query expansion procedure that reduces
the size of the query vector sent by the client to the server. With this approach, instead
of sending one ciphertext per database entry, the client sends a single ciphertext
encoding its desired index. The server then obliviously expands this ciphertext into

36

5 | PREVIOUS WORKS

a query vector using a homomorphic expansion procedure, eliminating the need for
the client to generate a large query.

2. Probabilistic Batch Codes (PBCs): SealPIR introduces a technique that they call
PBC as a data encoding mechanism to amortize server-side computational costs
when processing multiple queries. Unlike traditional batch codes, PBC are specifically
designed for PIR applications, enabling efficient multi-query processing with minimal
network overhead.

5.2.2 Theoretical Contributions

SealPIR’s contributions, from a theoretical perspective, can be summarized as follows:

- Oblivious Query Expansion: The query compression mechanism significantly
reduces the communication overhead between the client and the server. This is
achieved by encoding the client’s query as a single ciphertext, which is later expanded
homomorphically at the server without revealing the client’s desired index.

- Amortized Query Processing: Through the PBCs, SealPIR enables the server to
process multiple queries from the same client in a computationally efficient manner,
achieving a huge speedup compared to single-query processing.

- Reducing the cost of expansion: SealPIR replaces the cryptosystem used in XPIR
with the Fan-Vercauteren Cryptosystem cryptosystem, which will not be explored
in this work. This choice simplifies the implementation of key operations, such
as homomorphic addition, multiplication, and substitution, while ensuring robust
security guarantees.

- Handling Larger Databases: SealPIR overcomes the limitations imposed by the
fixed size of query vectors by either concatenating multiple expanded vectors or
using a 𝑑-dimensional hypercube representation. For example, two ciphertexts can
index up to 𝑁 2 entries, enabling efficient scaling for databases with millions of
entries.

- Probabilistic Batch Codes (PBCs): SealPIR uses PBCs to amortize server-side com-
putational costs across multiple queries. Unlike traditional batch codes, PBC achieve
this with minimal network overhead and are tailored to the specific requirements of
PIR protocols.

5.2.3 Challenges Addressed

SealPIR tackles critical challenges inherent in traditional CPIR schemes:

- High Query Size: Traditional CPIR schemes, including XPIR, require the client to
send a query vector proportional to the database size. SealPIR’s compressed query
mechanism significantly reduces this overhead,

- Expensive Query Processing: SealPIR’s use of PBC allows the server to amortize
computational costs across multiple queries, significantly improving throughput.

5.3 | SINGLE-SERVER PRIVATE INFORMATION RETRIEVAL WITH SUBLINEAR AMORTIZED TIME (CRYPTOEPRINT:2022/081)

37

- Bandwidth Constraints: By reducing the query size and optimizing network usage,
SealPIR is better suited for bandwidth-limited environments, such as mobile devices
or constrained wired connections.

5.2.4 Relevance to This Work

SealPIR’s contributions align closely with the objectives of this work, in a few lines
we can mention that the compressed query mechanism opens the doors for reducing
communication costs in bandwidth-constrained environments, a key focus of this work.
Actually, the compression idea presented in this paper is one of inspirations for the
optimizations presented in this work.

Finally, SealPIR represents a significant contribution in the field of computational
PIR by addressing the dual challenges of high communication and computational costs.
Its attempt to use compressed queries and amortized processing techniques makes it a
practical solution for real-world applications.

5.3 Single-Server Private Information Retrieval with

Sublinear Amortized Time (Corrigan-Gibbs,

Henzinger, et al., 2022)

This article introduces a new class of single-server Private Information Retrieval (PIR)
protocols that achieve sublinear amortized server time, marking a significant theoretical
advancement in the field. Unlike traditional single-server PIR schemes that require server-
side computation linear in the size of the database for each query, these protocols reduce
the amortized computational costs while maintaining robust security guarantees under
standard cryptographic assumptions.

5.3.1 Core Idea

The key idea of (Corrigan-Gibbs, Henzinger, et al., 2022) lies in dividing the server’s
computation into two phases, namaely the offline and online phases:

1. Offline Phase: During this phase, the server preprocesses the database to generate a
small "hint" that the client can store.1 The server-side computation during this phase
remains linear in the size of the database, but this cost is amortized over multiple
queries.

2. Online Phase: Using the hint from the offline phase, the client can issue adaptive
queries to the server. The server processes each query in sublinear time relative to
the database size, resulting in sublinear amortized cost across multiple queries.

1 The hint is a compact, precomputed piece of information about the database, generated during an offline
phase, that the client stores and uses to enable sublinear-time query responses during subsequent online
interactions.

38

5 | PREVIOUS WORKS

Note that the offline phase introduces computational overhead upfront but ensures
that subsequent queries can be processed more efficiently, making the scheme well-suited
for applications with multiple or sequential queries. This may no be clear, so a reading
over the work is recommended.

5.3.2 Theoretical Contributions

(Corrigan-Gibbs, Henzinger, et al., 2022) introduces several important theoretical
advancements to the design of PIR protocols:

- Sublinear Amortized Server Time: The protocols achieve sublinear amortized
server-side computation time, making them the first to combine this property with
adaptivity in query handling and minimal additional storage requirements.

- Client-Side Hints: The use of a client-stored hint reduces the online computational
burden on the server. The hint is computed during the offline phase with a time
complexity linear in the database size but is reused across multiple queries to achieve
amortized efficiency. Note that this ideia is

- Adaptivity: Unlike batch-PIR schemes,2 which require the client to submit all queries
at once, this protocol allows the client to issue queries adaptively over time, enabling
broader applicability in real-world scenarios.

- Two-Step Compilation: (Angel et al., 2018) demonstrates a methodology for
compiling two-server PIR schemes into single-server schemes using fully homomor-
phic encryption (FHE) or linearly homomorphic encryption (LHE). This compilation
process bridges the gap between theoretical constructs and single-server practicality.

- Lower Bounds: The authors establish tight lower bounds on the trade-off between
client storage, server online time, and database size. These bounds prove that the
proposed schemes are asymptotically optimal in terms of the trade-offs achieved.

5.3.3 Challenges Addressed

The protocols address several longstanding challenges in the field of PIR:

- High Computational Costs: By decoupling the offline and online phases, the
protocols reduce the computational heavy work of individual queries to sublinear
complexity.

- Adaptivity vs. Efficiency: Traditional schemes often sacrifice efficiency for adaptiv-
ity. This paper bridges that gap, supporting adaptive queries with efficient server-side
computation.

2 Batch-PIR schemes are private information retrieval protocols designed to allow a client to retrieve multiple
records from a database in a single query while maintaining privacy. These schemes require the client to
submit all queries at once in a non-adaptive batch, making them efficient for scenarios with predefined query
sets. However, they lack flexibility in supporting dynamic or adaptive queries, limiting their applicability in
real-time systems. We will not go deep in this approach in this work

5.4 | FRODOPIR: SIMPLE, SCALABLE, SINGLE-SERVER PRIVATE INFORMATION RETRIEVAL (CRYPTOEPRINT:2022/981)

39

- Practical Applicability: By relying on not too hard to implement cryptographic
assumptions and requiring only sublinear additional storage, the protocols are well-
positioned for practical deployment in settings with multiple clients or repeated
queries.

5.3.4 Real World Applications

Two important things to mention on (Corrigan-Gibbs, Henzinger, et al., 2022) is
that the reduced server-side costs make the schemes suitable for large-scale systems, such
as digital libraries, DNS resolution, and malware detection. This is a clear visualization of a
real world cryptographic application. In addition the amortized computational efficiency is
particularly beneficial for scenarios where clients make repeated queries to the same
database

5.3.5 Relevance to This Work

(Corrigan-Gibbs, Henzinger, et al., 2022) aligns with the objectives of my work by
demonstrating the feasibility of sublinear amortized server-side computation in single-
server PIR. Specifically on the efficiency improvements, where the techniques for reducing
server-side costs while maintaining adaptivity provide valuable insights for designing
scalable PIR protocols.

It also represents a significant theoretical advancement in PIR by achieving sublinear
amortized server-side computation time while maintaining practical usability. Its innova-
tions, specially in hint-based query handling and adaptivity establish a new benchmark
for PIR protocol design. These contributions directly inform this work’s efforts to balance
efficiency, scalability, and security in single-server PIR systems.

5.4 FrodoPIR: Simple, Scalable, Single-Server Private

Information Retrieval (Davidson et al., 2022)

FrodoPIR (Davidson et al., 2022) is a stateful, single-server Private Information Re-
trieval (PIR) scheme that takes in account a large numbers of clients, meaning many
queries for the server in a short time (usually small queries).

The scheme developed in FrodoPIR achieves a great practical scalability and cost-
efficiency by using a client-independent offline preprocessing phase, coupled with minimal
online overheads, resulting in significantly reduced amortized financial and computational
costs for the server. Note that the idea of client-independent is very similar to the ideas
presented on the works we mentined above.

The scheme is built upon the Learning With Errors (LWE) problem, avoiding the
complexity of fully homomorphic encryption (FHE) techniques used in previous state-of-
the-art solutions, which focused on Rind-Learning With Erroes (RLWE) schemes.

For a better understading of this protocol, see the Appendix A .

40

5 | PREVIOUS WORKS

5.4.1 Core Idea

The core innovation in FrodoPIR lies in its separation of the PIR process into two distinct
phases, following the same proposition as in (Corrigan-Gibbs, Henzinger, et al., 2022):

1. Offline Phase: The server preprocesses the database into a compressed form, inde-
pendent of the number of clients or their queries. The resulting global parameters
are made publicly available for download by the clients.

2. Online Phase: Clients use the preprocessed parameters to generate encrypted
query vectors and send them to the server. The server computes the response
by performing matrix-vector multiplications and sends it back to the client, who
decrypts the response to retrieve the desired data.

This design in this protocol ensures that the computationally expensive preprocessing
step is amortized across all client queries, resulting in significant cost savings for large-
scale deployments. And actualy, the computational gains are part of the main success
of this work.

5.4.2 Theoretical Contributions

FrodoPIR introduces and applies several key contributions to the design of single-
server PIR schemes:

- Client-Independent Preprocessing: Unlike previous stateful schemes where
preprocessing depends on the number of clients, FrodoPIR’s offline phase is entirely
client-independent. This reduces server-side costs and enhances scalability.

- Use of LWE Instead of RLWE: FrodoPIR is built upon the Learning With Errors
(LWE) problem, avoiding ring-based lattice structures. This simplification enables
modular arithmetic implementations that are both lightweight and efficient, making
FrodoPIR practical for real-world applications.3

- Reduced Online Costs: FrodoPIR achieves server response times of less than 1
second for a database of 1 million elements and maintains a response size blow-up
factor of less than 3.6×, demonstrating low online communication and computational
overheads.

- Configurability and Cost Optimization: FrodoPIR is highly configurable, allow-
ing adjustments in client download size and server-side computation to optimize
performance for various deployment scenarios. This makes it adaptable to diverse
applications.

3 LWE (Learning with Errors) is often favored over RLWE (Ring Learning with Errors) in certain contexts
due to its simpler underlying structure in vector spaces, which avoids the additional algebraic assumptions
required by RLWE. While RLWE relies on polynomial rings and ideal lattices, enabling more compact
and efficient representations, it introduces potential vulnerabilities and exploitations on ring’s algebraic
properties. On the other hands, LWE operates in general lattices and maintains reductions to worst-case
lattice problems without introducing additional algebraic assumptions. This makes LWE more applicable
and theoretically robust. This is widely explored in (Regev, 2009; Peikert, 2015)

5.5 | SIMPLEPIR - ONE SERVER FOR THE PRICE OF TWO: SIMPLE AND FAST SINGLE-SERVER PRIVATE INFORMATION RETRIEVAL (Henzinger
et al., 2023)

41

- Open-Source Implementation and Analysis: FrodoPIR includes a simple Rust-
based implementation and detailed experimental analyses, emphasizing transparency
and reproducibility of its results.

Note that all of the above characteristics mentioned are very important for the practi-
cality of the protocol, and this correlates with how applicable in real life the protocol is.

5.4.3 Challenges Addressed

We need to notice, though, that FrodoPIR addresses several limitations of prior PIR
schemes:

- High Preprocessing Costs: Previous stateful schemes incurred preprocessing
costs that scaled linearly with the number of clients, making them impractical for
large-scale systems. FrodoPIR eliminates this dependency.

- Complexity of FHE-Based Methods: By avoiding FHE, FrodoPIR simplifies imple-
mentation and reduces computational costs, m aking it feasible to deploy on standard
cloud-based infrastructure (The pratical experiments were done on a real-world
AWS server of considerable size - c5n.2xlarge AWS EC2).

- Financial Cost Scalability: FrodoPIR significantly lowers server-side financial
costs, with experiments showing costs of approximately $1 for processing 100,000
client queries in a database of 1 million elements.

- Implementation Simplicity: FrodoPIR’s design relies on modular arithmetic,
requiring only standard 32-bit integer operations, which are widely supported and
easy to implement.

Experimental results from (Davidson et al., 2022) remarks that it achieves low run-
times and communication overheads across various database configurations, making it
particularly suitable for large-scale, multi-client deployments.

5.4.4 Relevance to This Work

FrodoPIR design aligns closely with the objectives of this work in a way that it imple-
ments towards a practical, scalable, cost-effective PIR protocol. Here, the client-independent
preprocessing and efficient online phase serve as an utile sketch for scalable PIR systems.
Also, FrodoPIR’s focus on reducing financial and computational costs is very consonant
to this work efforts to develop cost-effective cryptographic protocols.

5.5 SimplePIR - One Server for the Price of Two:

Simple and Fast Single-Server Private Information

Retrieval (Henzinger et al., 2023)

SimplePIR (Henzinger et al., 2023) is a single-server Private Information Retrieval
(PIR) scheme that achieves unprecedented server throughput, rivaling the performance
of multi-server PIR protocols while relying solely on the Learning With Errors (LWE)

42

5 | PREVIOUS WORKS

assumption. This scheme idea, just like the one used in (Davidson et al., 2022) laverages
of the preprocessing techniques, and, on top of that, SimplePIR significantly reduces server
computation per query, achieving throughput rates as high as 10 GB/s per core. Note that
this design redefines the efficiency benchmarks for single-server PIR protocols, though
it incurs higher communication costs relative to some prior schemes.

5.5.1 Core Idea

SimplePIR uses a two-phase approach, exactly like the ones previously mentioned
to achieve high throughput:

1. Preprocessing Phase: The server preprocesses the database, performing compu-
tationally expensive operations that depend only on the database and the public
parameters of the encryption scheme. This preprocessing step enables the server to
handle subsequent client queries with minimal computation.

2. Online Phase: Clients query the server using encrypted query vectors. The server
efficiently computes matrix-vector products and returns the result, allowing the
client to decrypt and retrieve the desired database entry.

5.5.2 Theoretical Contributions

SimplePIR contributes with a few innovations to the PIR literature, which are actually
going to be very important for the practicality of the protocol that will be developed
in this work:

- Preprocessing for High Throughput: By performing the bulk of matrix-vector
computations during preprocessing, SimplePIR minimizes server-side computation
in the online phase to approximately one 32-bit multiplication and addition per
database byte.

- Use of LWE-Based Encryption: SimplePIR is based on standard LWE rather
than the ring variant (RLWE). This choice avoids polynomial arithmetic and Fast
Fourier Transforms, simplifying implementation and improving efficiency. (Note
that (Davidson et al., 2022) does the same)

- Client Reusability of Preprocessed Hints: Clients download a hint during the
preprocessing phase, which is independent of the specific query. This hint can be
reused for an unbounded number of queries, amortizing its communication cost.

- Adaptability to Database Size: SimplePIR supports databases of arbitrary sizes by
representing the database as a matrix. The hint size scales as (

√
𝑁), where 𝑁 is

the database size, ensuring scalability for large datasets.

- DoublePIR Extension: A recursive variant, DoublePIR, further reduces the hint size
by applying SimplePIR recursively, achieving a trade-off between communication
cost and server throughput.

5.5 | SIMPLEPIR - ONE SERVER FOR THE PRICE OF TWO: SIMPLE AND FAST SINGLE-SERVER PRIVATE INFORMATION RETRIEVAL (Henzinger
et al., 2023)

43

5.5.3 Challenges Addressed

SimplePIR addresses critical challenges inherent in single-server PIR schemes, being
the most recent work in this list. Notable, it tackles the following issues:

- Throughput Limitations: Previous single-server PIR schemes achieved server
throughput far below memory bandwidth. SimplePIR closes this gap, achieving up
to 81% of theoretical memory bandwidth.

- Computational Overheads: By offloading computationally expensive operations
to the preprocessing phase, SimplePIR minimizes server workload during query
handling.

- Multi-Query Scalability: The client’s hint is reusable across multiple queries,
ensuring that the scheme remains efficient in scenarios with repeated queries.

On (Henzinger et al., 2023) implementation, there is a notable effort to show the
feasibility and efficiency. So, the authors demonstrate that SimplePIR consists of the three
main components: the server-side preprocessing, the client-side query generation, and the
server-side query processing. With them, they explore the following:

- Preprocessing Phase: The server preprocesses the database using the LWE-based
encryption scheme, producing a hint that can be downloaded by clients. This pre-
processing work is amortized across all queries.

- Online Phase: During the online phase, the server performs lightweight matrix-
vector multiplications using the preprocessed data, achieving high throughput for
query handling.

- Communication Costs: For a 1 GB database, the hint size is approximately 121 MB,
and each query requires 242 KB of communication. The DoublePIR variant reduces
the hint size to 16 MB at the cost of slightly higher per-query communication.

In this work, we will not go deeper on SimplePIR or DoublePIR practical scheme
and implementations.

5.5.4 Relevance to This work

This paper is probably the closest to the idea that will further be developed in this work.
Namely, we seek for efficiency with a preprocessing techniques and high throughput
server as a model for designing computationally efficient PIR protocols. Scalability by
the ability to handle large databases and multi-query scenarios and the possibility of a
simple implementation using standard LWE and its avoidance of complex polynomial
arithmetic and FFTs.

Finally, SimplePIR represents an advance in single-server PIR design by achieving high
throughput, scalability, and simplicity. It uses the advantages of the preprocessing and
LWE-based encryption positions it as a benchmark for future PIR protocols.

45

Chapter 6

FoldingFrodo

In this chapter, we present the construction of the FoldingFrodo protocol with the
Paillier (Paillier, 1999) encryption system. We start by presenting the cryptographic
setup, followed by the preprocessing phase, and the online phase.

The FoldingFrodo protocol is a PIR protocol based on the FrodoPIR (Davidson et al.,
2022) protocol that was described in the previous chapter. The FrodoPIR protocol, as well
as FoldingFrodoPIR protocol are stataful, computational PIR protocol. This means that the
client maintains an internal state that is updated at each query, and the server maintains
a state that is updated at the preprocessing phase.

6.1 FoldingFrodo with Paillier

The goal of this approach on the PIR protocol is to reduce the computational cost of the
online query processing, allowing the client to deal with multiple indices simultaneously.
By structuring the database as a

√
𝑚 ×

√
𝑚 matrix 𝑫, each cell representing a different

element in 𝐷𝐵, the client sends then two query vectors 𝒗row and 𝒗col, each of size
√
𝑚.

These ideas were used in separate works, namelly, this idea of optimization was used in
(Angel et al., 2018) and (Henzinger et al., 2023), and the goal is to apply this optimization
to the FrodoPIR protocol.

In order to reduce the amount of homomorphic sums on the client query generation
phase, we apply the Paillier (Paillier, 1999) encryption for the homomorphic sum at the
indicator vector. Same is done to compute the server response.

6.1.1 Notations

On the FoldingFrodoPIR protocol, we have the following notations:

- All 𝒗 are column vectors.

- ⌊𝑥⌉: the nearest integer to 𝑥 .

- 𝒗 $← 𝜒 means that 𝒗 is sampled from the distribution 𝜒 .

46

6 | FOLDINGFRODO

- 𝜆 is the security parameter.

- PRG is a pseudorandom generator function that takes a seed 𝜇 and generates a
matrix 𝐀.

6.1.2 Cryptographic Setup

From the FrodoPIR setup, we will keep few setups unchanged. Take the server 
containing the database 𝑫𝑩 that each client access. The database 𝑫𝑩 can be read as a
vector of 𝑚 elements of 𝑤 bits. Each 𝑖 − 𝑡ℎ entry of 𝑫𝑩 is associated with an index 𝑖 that
corresponds to a position in the vector. In the setup, let’s assume that there are 𝐶 clients
making a maximum of 𝑐 queries to the database 𝑫𝑩.

Note that the LWE instance is used under the setting: let 𝑛 be the dimension and 𝑞 the
modulus, let 𝜌 be the number of bits within each entry of the DB matrix, where 0 < 𝜌 < 𝑞.
Let 𝜒 be the uniform distribution over {−1, 0, 1}, let 𝜆 be the security parameter, and use
PRG(𝜇, 𝑥, 𝑦, 𝑞) to denote a pseudorandom generator that uses a seed 𝜇 ← {0, 1}𝜆 in the
matrix ℤ𝑥×𝑦

𝑞 , where 𝑥 and 𝑦 are the dimensions of the matrix.

6.1.3 Preprocessing Phase

1. Server Setup: (FFPIR.ssetup) The server constructs the database with𝑚 elements
and samples the seed 𝜇 ∈ {0, 1}𝜆.

The server also generates the parameters of the LWE encryption scheme as
(𝑞, 𝑛, 𝑚, 𝜎) and the distribution of the secret being a ternary distribution 𝜒 over
{−1, 0, 1}.

The database is parsed as 𝑫𝑩 ∈ ℤ𝑚
𝑡 and parses 𝑫 ∈ ℤ

√
𝑚×

√
𝑚

𝑡 as being the matrix
representation of the database stored at the server. Note that 𝑡 is the plaintext space
and that the cipher is based in the decisional-LWE and that this cypher has the
message 𝑚 ∈ ℤ𝑡 . In other words,

𝒃 = 𝒂 ⋅ 𝒔 + 𝒆 +
𝑞
𝑡
⋅ 𝒎

Also, notice that all the 𝑫[𝑖][𝑗] elements on the database are all taken mod𝑡, where
a row of DB fits in ℤ𝑡 , or, in other words, the rows in 𝑫𝑩 has 𝑙𝑜𝑔(𝑡) bits.

Then, the server generates the Paillier’s parameters as (𝑝, 𝑘, 𝑟). Note that we require
Paillier’s plaintext space to be ℤ𝑛 with 𝑛 > 𝑞 and not 𝑛2 as the original scheme in
(Paillier, 1999).

And than the client sends a query with two
√
𝑚 − 𝑑𝑖𝑚 vectors (row, col) instead

of the one 𝑚 − 𝑑𝑖𝑚 vector on the FrodoPIR protocol.

2. Server Preprocessing: (FFPIR.spreproc) Here the server derives the matrix
𝐀 ∈ ℤ𝑛×

√
𝑚

𝑞 as
𝐀[𝑖, 𝑗] ← 𝑃𝑅𝐺(𝜇, 𝑛,

√
𝑚, 𝑞),

6.1 | FOLDINGFRODO WITH PAILLIER

47

and runs
𝑫 ← 𝑝𝑎𝑟𝑠𝑒(𝑫𝑩, 𝑡),

where the parse function encodes the database into a matrix 𝑫 ∈ ℤ
√
𝑚×

√
𝑚

𝑞

To generate the public parameters, the server then computes

𝑴 ← 𝑨 ⋅ 𝑫

where𝑴 ∈ ℤ𝑛×
√
𝑚

𝑞 and publishes the pair (𝜇,𝑴) ∈ {0, 1}𝜆×ℤ𝑛×
√
𝑚

𝑞 to a public repository
accessible by clients.

3. Client Preprocessing: (FFPIR.cpreproc) Each client downloads the pair (𝜇,𝑴)
and runs

𝑨 ← 𝑃𝑅𝐺(𝜇, 𝑛,
√
𝑚, 𝑞).

Then, for the c intended queries the index 𝑖 ∈ [1, 𝑐], the client samples 𝑐 vectors
𝒔𝒊 ← (𝜒)𝑛 and 𝒆𝒊 ← (𝜒)

√
𝑚.

Later it computes:
𝒃𝒊 ← 𝒔𝑻𝒊 ⋅ 𝑨 + 𝒆𝑻

𝒊 ∈ ℤ
√
𝑚

𝑞

and
𝒄𝒊 ← 𝒔𝑻𝒊 ⋅ 𝑴 ∈ ℤ

√
𝑚

𝑞

DB and stores the pair 𝑿 = (𝒃𝒋 , 𝒄𝒋)

6.1.4 Online Phase

1. Client query generation: (FFPIR.query)

For each index i that the client wants to query, the client generates a vector of the
following this:

Define 𝒇 𝑖 = ⌊𝑞/𝑡⌉𝒆𝒊 where 𝒆𝒊 ∈ {0, 1}
√
𝑚 is the i-th indicator vector.

This means that 𝒇 𝑖 an all-zero vector in which the i- th position is taken as ⌊𝑞/𝑡⌉.

The client then pops two pairs (𝒃, 𝒄) and (𝒃′, 𝒄′) from the internal state X.

Also, the client encrypts each bit of 𝐞𝑗 with Paillier, that is,

∀1 ≤ 𝑖 ≤
√
𝑚, 𝑏̂𝑖 = Paillier.Enc(𝐞𝑗[𝑖])

and defines 𝐛̂ = (𝑏̂1, ..., 𝑏̂√𝑚).

The client then computes:
𝐛̃ = 𝒃 + 𝒇 𝑖 ∈ ℤ

√
𝑚

𝑞

And finally send 𝒃̃ and 𝒃̂ to the server.

2. Server response: (FFPIR.respond) The server receives 𝒃̃ and 𝒃̂ from the client,

48

6 | FOLDINGFRODO

and computes:
𝐜̃ = 𝐛̃ ⋅ 𝐃 ∈ ℤ

√
𝑚

𝑞

Now, the server uses Paillier’s homomorphic properties and the vector of Paillier
ciphertexts 𝐛̂ received as part of the query to compute

ĉ =

√
𝑚

∑
𝑖=1

𝐛̂[𝑖] ⋅ 𝐜̃[𝑖] = Paillier.Enc(𝐜̃ ⋅ 𝐞𝑗) = Paillier.Enc(𝐜̃[𝑗])

The server then sends ĉ to the client.

3. Client postprocessing: (FFPIR.process) The client receives ĉ, computes 𝑦 =
Paillier.Dec(ĉ) and outputs ⌊ 𝑡𝑞 ⋅ (𝑦 − 𝐜[𝑗])⌉ where 𝐜 is the vector popped out of the
state when the client sent the query.

6.1.5 Correctness

This section demonstrates the correctness of the FoldingFrodoPIR protocol by verifying
that the final client output correctly retrieves the desired database element 𝐃[𝑖][𝑗].

6.1.6 Correctness of the Server Response (FFPIR.respond)

From the server’s computation, the response vector 𝐜̃ is defined as:

𝐜̃ = 𝐛̃ ⋅ 𝐃 ∈ ℤ
√
𝑚

𝑞 .

Expanding 𝐜̃, we have:

𝐜̃ ≡ 𝐬 ⋅ 𝐌 + 𝐞 ⋅ 𝐃 + ⌊𝑞/𝑡⌉ ⋅ row𝑖(𝐃) (mod 𝑞).

Here:

- 𝐬 ⋅ 𝐌: Represents the contribution from the structured matrix multiplication.

- 𝐞 ⋅ 𝐃: Accounts for the effect of the error vector.

- ⌊𝑞/𝑡⌉ ⋅ row𝑖(𝐃): Isolates the desired database row as a scaled indicator vector.

Considering the use of Paillier encryption, the server computes:

ĉ =

√
𝑚

∑
𝑖=1

𝐛̂[𝑖] ⋅ 𝐜̃[𝑖],

where 𝐛̂ is the vector of encrypted indicator bits received from the client. Notice that:

ĉ encrypts 𝐬 ⋅ col𝑗(𝐌) + 𝐞 ⋅ col𝑗(𝐃) + ⌊𝑞/𝑡⌉ ⋅ 𝐃[𝑖][𝑗] (mod 𝑞).

This is valid because:

6.1 | FOLDINGFRODO WITH PAILLIER

49

- Paillier’s plaintext modulus 𝑛 is larger than 𝑞, ensuring no modular wrap-around
during computation.

- The norm of 𝐜̃ satisfies ‖𝐜̃‖∞ < 𝑞, preventing overflow.

6.1.7 Correctness of the Client Postprocessing (FFPIR.process)

After receiving the server’s encrypted response ĉ, the client decrypts and processes it
to retrieve the target database element. Specifically, the client computes:

𝑦 − 𝐜[𝑗] = 𝐞 ⋅ col𝑗(𝐃) + ⌊𝑞/𝑡⌉ ⋅ 𝐃[𝑖][𝑗].

Breaking this down we have:

𝑦 − 𝐜[𝑗] = 𝐞 ⋅ col𝑗(𝐃) + 𝝐 +
𝑞
𝑡
⋅ 𝐃[𝑖][𝑗],

where ‖𝝐‖∞ ≤ 1/2. The term 𝑞
𝑡 ⋅ 𝐃[𝑖][𝑗] is the target value.

The client then applies rounding to isolate 𝐃[𝑖][𝑗]:

⌊
𝑡
𝑞
⋅ (𝑦 − 𝐜[𝑗])⌉ = ⌊

𝑡
𝑞
⋅ 𝐞 ⋅ col𝑗(𝐃) +

𝑡
𝑞
⋅ 𝝐⌉ + 𝐃[𝑖][𝑗].

The rounding succeeds because:

𝑡
𝑞
⋅ 𝐞 ⋅ col𝑗(𝐃) +

𝑡
𝑞
⋅ 𝝐

is small enough to round to zero, provided:

‖‖𝐞 ⋅ col𝑗(𝐃) + 𝝐‖‖∞ < 𝑞/(2𝑡).

This condition is satisfied when:

‖𝐞‖∞ < 𝑞/(4𝑡
2√𝑚).

Thus, the client correctly retrieves:

𝐃[𝑖][𝑗].

Therefore, the correctness of the FoldingFrodoPIR protocol is ensured as the server
provides a response that encodes the required row and ensures error terms are manageable.
And also, the client processes the response using rounding techniques to accurately isolate
the desired database element 𝐃[𝑖][𝑗].

50

6 | FOLDINGFRODO

6.2 Algorithms and Costs

In this chapter, the algorithms used in the FoldingFrodo protocol are presented. The
algorithms are divided into five main parts: the server preprocessing, the client prepro-
cessing, the client query generation, the server response, and the client decryption. For
each part, the algorithm is presented as a pseudocode, followed by a brief analysis of
the algorithm’s complexity, and a discussion about the gains and losses of the protocol
in terms of efficiency.

When analyzing the cost and complexities, it is needed the understanding the trade-offs
between various resource requirements, including time and communication overhead.
One way to verify this, is deividing the analysis into three primary categories:

- Definition of Complexity and Big O Notation: Complexity, in computational
terms, measures the resources required for an algorithm to execute, such as time or
memory, as a function of the input size. Big O notation is used to express the upper
bound of an algorithm’s complexity, focusing on the dominant terms that impact
performance as the input grows.

- Computational Costs: Computational costs refer to the processing resources con-
sumed by the server and client during each phase. In FFPIR case, key operations, such
as matrix multiplications and cryptographic transformations, contribute significantly
to this cost. It is important to analyze the impact of these operations using Big O
notation, detailing how the complexity scales with parameters like database size
and security levels.

- Communication Costs: Communication costs capture the data transmitted be-
tween the client and server during the query and response phases. These costs
depend on the query size, the encrypted response size, and the overhead introduced
by the protocol’s structure. It is possible to detail the scalability of communication
overhead with respect to the database size and the trade-offs involved in reducing
this overhead.

- Preprocessing Costs: Preprocessing involves preparing the database and related
structures before queries can be processed. This phase includes steps like encryption,
data partitioning, and the generation of auxiliary data structures. The preprocessing
cost is evaluated in detail, considering its one-time nature and how it affects the
overall efficiency of the system.

The algorithms used as a base for the analysis are presented in the Appendix B.

6.2.1 Notations

Throughout this analysis, we use the following notations:

- 𝑚: Total number of database elements, |𝐷𝐵| = 𝑚.

-
√
𝑚: Dimension of the database matrix representation, where 𝐷𝐵 is viewed as a√
𝑚 ×

√
𝑚 matrix.

- 𝑛: Dimension of the secret vector in the LWE-based scheme.

6.2 | ALGORITHMS AND COSTS

51

- 𝑞: Modulus used in LWE-based computations.

- 𝜆: Security parameter.

- PRG(𝜇, 𝑥, 𝑦, 𝑞): Pseudorandom generator that outputs a matrix in ℤ𝑥×𝑦
𝑞 .

- 𝐶: Number of concurrent clients in the system.

- 𝑐: Number of queries per client, 𝑐 =
√
𝑚.

6.2.2 Costs and Complexities

In this section, we analyze the costs and complexities of the Folding Frodo Private
Information Retrieval (FFPIR) protocol. We consider the computational, communication,
and storage costs associated with the protocol.

Operations in FFPIR

This very first analysis outlines the key operations involved in each phase of the
FFPIR protocol. The metrics are categorized into modular multiplications (mod-q mults),
additions (mod-q adds), and calls to the Pseudorandom Generator (PRG). Each formula
provides the computational complexity based on the input dimensions such as 𝑛 (number
of entries) and

√
𝑚 (square root of database blocks).

This framework assumes that PRG generation and matrix multiplications dominate the
preprocessing phase, while later phases involve lightweight computations for response
and processing.

The table 6.1 outlines the key operations in each phase of the FoldingFrodo protocol.

Phase Metric Formula Explanation

spreproc mod-q mults 𝑛 ⋅ 𝑚 ⋅
√
𝑚 Precomputing 𝑴 = 𝐀 ⋅ 𝐃

mod-q adds 𝑛 ⋅ 𝑚 − 𝑛 ⋅
√
𝑚 Additions in matrix multiplication

PRG calls 𝑛 ⋅
√
𝑚 Generating 𝐀 via PRG

cpreproc mod-q mults 2 ⋅ 𝑛 ⋅
√
𝑚 Precomputing query-related vectors

mod-q adds 2 ⋅ (𝑛 ⋅
√
𝑚 −

√
𝑚) Additions in preprocessing

PRG calls 𝑛 ⋅
√
𝑚 Regenerating 𝐀

query mod-q mults − No operations
mod-q adds 2 Generating 𝐛̃ and 𝐛̂
PRG calls − No operations

respond mod-q mults 𝑚 +
√
𝑚 ⋅ (2 + 𝑛) Computing 𝐜̃ and homomorphic operations

mod-q adds
√
𝑚 ⋅ (𝑛 − 1) + (𝑚 − 1) Additions for response generation

PRG calls − No operations

process mod-q mults 𝑂(1) Decrypting one Paillier cryptogram
mod-q adds 𝑂(1) Additions for decryption
PRG calls − No operations

Table 6.1: Detailed Operations in FFPIR

52

6 | FOLDINGFRODO

6.2.3 Client and Server Costs

This analysis compares the computational, communication, and storage costs incurred
by the client and server in both the offline and online phases of the protocol. Offline costs
represent the preprocessing stage where the majority of heavy operations occur, while
online costs reflect real-time interactions.

Here, there are assumptions needed, such as fixed database dimensions and a limited
number of client queries, with 𝐶 representing the number of concurrent queries amortized
over the protocol’s runtime.

Phase Component Client Cost Server Cost Storage Cost

Offline Communication 𝑂(0) 𝑂(𝑛 ⋅
√
𝑚) 𝑂(𝑛 ⋅

√
𝑚)

Computation 𝑂(𝐶 ⋅
√
𝑚) 𝑂(𝑛 ⋅ 𝑚) −

Storage 𝑂(𝐶 ⋅
√
𝑚) 𝑂(𝑛 ⋅

√
𝑚) −

Online Communication 𝑂(
√
𝑚) 𝑂(

√
𝑚) −

Computation 𝑂(1) 𝑂(𝑚 +
√
𝑚) −

Storage 𝑂(𝐶 ⋅
√
𝑚) 𝑂(𝑛 ⋅

√
𝑚) −

Table 6.2: Client and Server Costs for FFPIR

6.2.4 Amortized and Big-O Costs

Amortized costs are derived by dividing the resource utilization by the number of
queries, 𝐶, processed in batch mode. This provides insights into the per-query cost re-
duction achievable through batching. The assumptions include a uniform distribution of
queries over the runtime and constant preprocessing overhead shared across the batch.

Phase Component Amortized Client Cost Amortized Server Cost

Offline Communication 𝑂(0) 𝑂(𝑛 ⋅
√
𝑚/𝐶)

Computation 𝑂(
√
𝑚) 𝑂(𝑛 ⋅ 𝑚/𝐶)

Online Communication 𝑂(
√
𝑚/𝐶) 𝑂(

√
𝑚/𝐶)

Computation 𝑂(1/𝐶) 𝑂(𝑚/𝐶 +
√
𝑚/𝐶)

Table 6.3: Amortized Costs for FFPIR

The Big-O notation, on the other hand, provides a high-level summary of asymptotic
costs for the client and server during offline and online phases. These costs are expressed
in terms of the input size parameters 𝑛, 𝑚, and 𝐶. The assumptions include negligible
overhead for constant-time operations and that communication costs scale linearly with the
size of transmitted data. This table is particularly useful for understanding scalability and
identifying bottlenecks in large-scale deployments. Table 6.4 summarizes the asymptotic
costs of the protocol for large database sizes 𝑚, assuming fixed parameters 𝑛 and 𝐶.

6.2 | ALGORITHMS AND COSTS

53

Phase Component Client Cost Server Cost

Offline Communication 𝑂(0) 𝑂(𝑛 ⋅
√
𝑚)

Computation 𝑂(𝐶 ⋅
√
𝑚) 𝑂(𝑛 ⋅ 𝑚)

Storage 𝑂(𝐶 ⋅
√
𝑚) 𝑂(𝑛 ⋅

√
𝑚)

Online Communication 𝑂(
√
𝑚) 𝑂(

√
𝑚)

Computation 𝑂(1) 𝑂(𝑚 +
√
𝑚)

Storage 𝑂(𝐶 ⋅
√
𝑚) 𝑂(𝑛 ⋅

√
𝑚)

Table 6.4: Big-O Costs for FFPIR

55

Chapter 7

Results and Discussion

To determine whether the FFPIR implementation is better in comparison to the provided
alternative FrodoPIR, we analyze and compare their costs in terms of communication,
computation, and storage across offline and online phases for both the client and
server.

7.1 Amortization and Parameter Explanation

The comparative analysis relies on key parameters and amortization considerations to
properly scale costs across multiple clients and queries. Below, we define the parameters
and discuss their role in cost calculation:

7.1.1 Parameters

- 𝑚: The total number of database elements stored on the server. This parameter
directly determines the size of the database and influences both communication and
computation costs.

-
√
𝑚: The square root of the total database size. In the FoldingFrodoPIR protocol, the

database is structured as a
√
𝑚 ×

√
𝑚 matrix to enable efficient querying with two

smaller vectors instead of a single large one.

- 𝐶: The number of clients interacting with the server. This parameter is used to
compute the total workload when multiple clients issue queries simultaneously.

- 𝑐 =
√
𝑚: The number of queries issued by each client. Each client generates

√
𝑚

queries to retrieve data from the server, amortizing the cost over the total queries
issued.

7.1.2 Amortization Considerations

In this analysis, the costs are amortized according to 𝐶 clients, each issuing 𝑐 =
√
𝑚

queries. Amortization ensures that costs are fairly distributed across all queries. The total

56

7 | RESULTS AND DISCUSSION

number of queries is 𝐶 ⋅ 𝑐 = 𝐶 ⋅
√
𝑚, which is used as the basis for comparing costs

across protocols.

- Offline Costs: Offline costs, such as preprocessing and communication, are shared
among 𝐶 clients. Therefore, while the cost scales with 𝐶, it is distributed across the
total queries.

- Online Costs: Online costs, such as query generation and response, are incurred
per client query. Thus, these costs depend on

√
𝑚 per client but scale to 𝐶 ⋅

√
𝑚 for

all clients.

- Storage Costs: Storage costs reflect the resources needed to maintain precomputed
data or state for all 𝐶 clients, each issuing

√
𝑚 queries.

By considering the combined workload of 𝐶 clients, the use of 𝐶 ⋅
√
𝑚 ensures an

accurate representation of the system’s overall cost.

7.1.3 Comparison Methodology

The comparison is structured around the following key components:

- Communication Costs:

- Offline Phase: Cost of precomputing and transmitting data.

- Online Phase: Cost of transmitting query vectors and responses.

- Computation Costs:

- Client: Preprocessing vectors and generating encrypted queries.

- Server: Preprocessing the database and responding to queries.

- Storage Costs:

- Client: Precomputed query data.

- Server: Precomputed matrices and database.

Component FrodoPIR FFPIR Advantage

Offline Client Communication - 𝑂(𝐶 ⋅
√
𝑚) FrodoPIR (No offline communication)

Online Client Communication 𝑂(𝑚) 𝑂(
√
𝑚) FFPIR (Reduced query communication)

Offline Client Computation 𝑂(𝑚) 𝑂(𝐶 ⋅
√
𝑚) FrodoPIR (Lower offline cost)

Online Client Computation 𝑂(1) 𝑂(
√
𝑚) FrodoPIR (Minimal online computation)

Offline Server Communication 𝑂(𝜆 ⋅
√
𝑚) 𝑂(𝐶 ⋅

√
𝑚) FrodoPIR (Smaller offline data sent)

Online Server Communication 𝑂(1) 𝑂(
√
𝑚) FrodoPIR (Smaller server response)

Offline Server Computation 𝑂(
√
𝑚/𝐶) 𝑂(𝐶 ⋅

√
𝑚) FrodoPIR (More efficient offline prep)

Online Server Computation 𝑂(𝑚) 𝑂(
√
𝑚) FFPIR (Better scalability)

Client Storage 𝑂(𝜆) 𝑂(𝐶 ⋅
√
𝑚) FrodoPIR (Less storage required)

Server Storage 𝑂(𝜆 ⋅
√
𝑚) 𝑂(𝜆 ⋅

√
𝑚) Tie

Table 7.1: Comparison Between Frodo and FFPIR

7.2 | COMPARISON OF FUNCTION COSTS BETWEEN FRODOPIR AND FFPIR

57

7.1.4 Comparative Analysis

The comparison of FrodoPIR and FFPIR highlights distinct advantages and trade-offs
in their design:

Offline Phase

- Client Communication: In the offline phase, FrodoPIR requires no communication
from the client, giving it an edge over FFPIR, where the client communicates 𝑂(𝐶 ⋅√
𝑚).

- Server Computation and Communication: FrodoPIR is more efficient due to its
lighter preprocessing, requiring only 𝑂(

√
𝑚/𝐶), compared to 𝑂(𝑛 ⋅

√
𝑚) for FFPIR.

Online Phase

- Client Communication: FFPIR significantly outperforms FrodoPIR, as it transmits
only 𝑂(

√
𝑚) query vectors compared to 𝑂(𝑚) in FrodoPIR.

- Client Computation: FrodoPIR maintains an advantage here, requiring 𝑂(1) oper-
ations, whereas FFPIR involves 𝑂(

√
𝑚).

- Server Computation: Both protocols scale well, but FFPIR can handle larger
databases more efficiently during query processing.

Storage Costs

- Client Storage: FrodoPIR has a minimal storage requirement of 𝑂(𝜆), compared to
𝑂(𝐶 ⋅

√
𝑚) for FFPIR.

- Server Storage: Both protocols require 𝑂(𝜆 ⋅
√
𝑚) for preprocessed data, making

this a tie.

7.2 Comparison of Function Costs Between FrodoPIR

and FFPIR

To better understand the differences between FrodoPIR and FFPIR, we can also compare
the temporal complexities and communication costs of each function: server preprocessing
(spreproc), client preprocessing (cpreproc), query generation (query), server response
(respond), and client postprocessing (process).

The following table summarizes these comparisons:

Phase/Function FrodoPIR Timing Complexity FrodoPIR Communication FFPIR Timing Complexity FFPIR Communication

spreproc 𝑂(𝑛𝑚) 𝑂(𝜆 ⋅
√
𝑚) 𝑂(𝑛

√
𝑚2) 𝑂(𝐶 ⋅

√
𝑚)

cpreproc 𝑂(𝑐 ⋅ (𝑛𝑚 + 𝑚)) 𝑂(𝜆) 𝑂(𝑐 ⋅ (𝑛
√
𝑚 +

√
𝑚)) 𝑂(𝜆)

query 𝑂(1) 𝑂(𝑚) 𝑂(1) 𝑂(
√
𝑚)

respond 𝑂(𝑚 ⋅ 𝜔) 𝑂(1) 𝑂(
√
𝑚2) 𝑂(

√
𝑚)

process 𝑂(𝜔) 𝑂(1) 𝑂(1) 𝑂(1)

Table 7.2: Timing and Communication Complexities of FrodoPIR and FFPIR

58

7 | RESULTS AND DISCUSSION

7.2.1 Explanation of Function Comparisons

Server Preprocessing (spreproc)

- FrodoPIR: The server constructs matrix 𝐀 and computes 𝐌 = 𝐀 ⋅𝐃, which involves
𝑂(𝑛𝑚) operations.

- FFPIR: The server constructs a smaller 𝐀 for 𝑛 ×
√
𝑚 and computes 𝐌 = 𝐀 ⋅ 𝐃,

where 𝐃 is represented as a
√
𝑚 ×

√
𝑚 matrix. This leads to 𝑂(𝑛

√
𝑚2) complexity.

- Communication: FrodoPIR requires 𝑂(𝜆 ⋅
√
𝑚) communication, while FFPIR in-

volves 𝑂(𝐶 ⋅
√
𝑚) communication for preprocessing results.

Client Preprocessing (cpreproc)

- FrodoPIR: The client regenerates 𝐀, computes 𝑏𝑗 = 𝐬𝑇𝑗 𝐀 + 𝐞𝑇𝑗 , and 𝑐𝑗 = 𝐬𝑇𝑗 𝐌, for 𝑐
queries, resulting in 𝑂(𝑐 ⋅ (𝑛𝑚 + 𝑚)) complexity.

- FFPIR: Similar steps are performed but over 𝑛×
√
𝑚 and

√
𝑚×

√
𝑚matrices, resulting

in 𝑂(𝑐 ⋅ (𝑛
√
𝑚 +

√
𝑚)).

- Communication: Both protocols require 𝑂(𝜆) communication for downloading
public parameters.

Query Generation (query)

- FrodoPIR and FFPIR: Both protocols involve simple vector operations to generate
𝑏̃ , resulting in 𝑂(1) complexity.

- Communication: FrodoPIR sends 𝑂(𝑚), while FFPIR reduces this to 𝑂(
√
𝑚).

Server Response (respond)

- FrodoPIR: The server multiplies 𝑏̃𝑇 with 𝐃, resulting in 𝑂(𝑚 ⋅ 𝜔), where 𝜔 =
⌈𝑤/ log(𝜌)⌉.

- FFPIR: The server multiplies 𝑏̃𝑇 with the
√
𝑚 ×

√
𝑚 matrix 𝐃, yielding 𝑂(

√
𝑚2).

- Communication: FrodoPIR sends 𝑂(1), whereas FFPIR sends 𝑂(
√
𝑚).

Client Postprocessing (process)

- FrodoPIR: Decrypting 𝑐̃ to retrieve 𝑥 involves 𝑂(𝜔) complexity.

- FFPIR: Since only one Paillier cryptogram is decrypted, the complexity is 𝑂(1).

- Communication: Both protocols have 𝑂(1) communication for this phase.

7.3 Discussion

The comparison at at the table 7.1 outputs distinct advantages for each protocol
depending on the context:

7.3 | DISCUSSION

59

- FFPIR: The primary advantage of FFPIR lies in its reduced online communication
costs, which scale as 𝑂(

√
𝑚), compared to 𝑂(𝑚) for FrodoPIR. This makes FFPIR

particularly suitable for large databases or scenarios with limited bandwidth.

- FrodoPIR: FrodoPIR, on the other hand, is better suited for small databases or
systems with constrained resources. Its simplicity and minimal offline and online
costs for the client make it ideal for lightweight deployments.

The comparison at the table 7.2 is another way to analyze the costs of FrodoPIR and
FFPIR functions. The results show:

- FrodoPIR: Performs better in offline preprocessing for the server due to simpler
matrix structures and avoids complexities introduced by the folded database repre-
sentation.

- FFPIR: Excels in reducing online communication and server computation during
query response, making it highly suitable for large database systems with multiple
queries.

The choice between FrodoPIR and FFPIR depends on application requirements. Using
FFPIR seems more acceptable when handling large datasets with multiple queries, where
online communication efficiency is critical. Whereas FrodoPIR demonstrates a signifi-
cant improvement in scalability for large-scale applications offering an alternative for
simpler use cases.

61

Chapter 8

Conclusion

This thesis presented a detailed exploration and implementation of the FoldingFrodo
protocol, a privacy-preserving system leveraging homomorphic encryption and lattice-
based cryptography to optimize Private Information Retrieval (PIR). The work focused on
the theoretical foundations, practical implementation, and comprehensive analysis of the
protocol’s efficiency and trade-offs compared to traditional PIR schemes, such as Frodo.

8.1 Summary of Contributions

The main contributions of this thesis can be summarized as follows:

- Protocol Design and Implementation: The FoldingFrodo protocol was imple-
mented in a modular and extensible manner, incorporating lattice-based encryption
through LWE and homomorphic operations using the Paillier cryptosystem. Each
component, including server preprocessing, client query generation, server response,
and client postprocessing, was carefully designed and implemented.

- Cost Analysis: Comprehensive analyses of computational, communication, and
storage costs were conducted. The trade-offs between offline and online phases
were examined, providing insights into the efficiency improvements offered by
FoldingFrodo. Amortized costs were also calculated, highlighting the protocol’s
scalability for multiple queries.

- Comparison with Traditional PIR: The protocol was benchmarked against the
FrodoPIR scheme. The results demonstrated significant gains in online communi-
cation efficiency, with a reduction from 𝑂(𝑚) to 𝑂(

√
𝑚), while acknowledging the

increased computational overhead during the offline phase.

- Pseudocode and Formalization: The thesis provided a formalized presentation
of the FoldingFrodo protocol, including pseudocode for all major components. This
structured documentation facilitates further development and understanding of the
protocol.

62

8 | CONCLUSION

8.2 Key Findings

From the analyses and experiments conducted in this thesis, the following key findings
emerged:

- The use of matrix-based decomposition and indicator vectors allows FoldingFrodo to
achieve reduced online communication costs, making it more practical for scenarios
with bandwidth constraints.

- The computational cost of server preprocessing, though high, can be amortized over
multiple queries, making the protocol suitable for batch operations.

- Homomorphic encryption, while introducing computational overhead, enables se-
cure and efficient query processing without compromising privacy.

- Storage requirements for both client and server scale with the parameters
√
𝑚 and

𝑛, offering a manageable trade-off for improved performance.

8.3 Challenges and Limitations

Despite its advantages, the FoldingFrodo protocol has certain challenges and limitations:

- Computational Overhead: The reliance on lattice-based cryptography and ho-
momorphic encryption introduces significant computational demands, particularly
during the server preprocessing and response phases.

- Scalability Concerns: While the protocol performs well for moderate values of 𝑚,
larger database sizes may require further optimization to maintain efficiency.

- Parameter Tuning: The security and performance trade-offs depend heavily on the
choice of parameters (𝑛,𝑚, 𝑞, 𝑡). Balancing these parameters for different application
scenarios remains a challenge.

8.4 Future Work

Building on the foundations laid in this thesis, several avenues for future research
and development are proposed:

- Full Protocol Implementation: Develop a complete end-to-end implementation
of the FoldingFrodo as a standalone system, integrating all components and opti-
mizations.

- Optimization of Homomorphic Operations: Investigate alternative homomor-
phic encryption schemes or optimizations to reduce the computational cost of
encryption, multiplication, and addition operations.

- Dynamic Parameter Adaptation: Develop techniques for dynamically adjusting
protocol parameters based on real-time workload and security requirements.

8.5 | CONCLUDING REMARKS

63

- Extended Applications: Explore the application of FoldingFrodo in multi-party
computation, secure database queries, and privacy-preserving machine learning.

- Benchmarking and Real-World Deployment: Conduct extensive benchmarking
against other PIR protocols in diverse network and database settings to evaluate
real-world performance and adaptability.

- Quantum Resistance: Further analyze the protocol’s resilience against quantum
attacks, especially concerning the choice of LWE parameters and cryptographic
primitives.

- Handling Larger Database Entries: Investigate adaptations of the protocol for
scenarios where database entries exceed the plaintext modulus 𝑡 (i.e., do not fit in
ℤ𝑡), requiring alternative encoding schemes or multiple modular computations to
accommodate larger data sizes.

8.5 Concluding Remarks

The FoldingFrodo protocol represents a significant step forward in the development of
efficient, privacy-preserving systems. By leveraging advances in lattice-based cryptography
and homomorphic encryption, the protocol achieves a balance between security and
performance, making it a practical deployment in modern data-intensive applications. The
reductions in online communication costs, combined with the scalability offered through
precomputations, provide a strong foundation for its use in scenarios with strict privacy
and efficiency requirements.

Through this thesis, the theoretical and practical foundations of FoldingFrodo have
been established, paving the way for further innovation and research in privacy-preserving
computation. The implementation idea and analysis provided in this work have highlighted
the potential of matrix-based approaches and hybrid encryption methods to address
traditional limitations in Private Information Retrieval (PIR) protocols.

Looking ahead, this thesis is not the end but rather a continuously ongoing research
into PIR and related privacy-preserving technologies. I intend to continue refining and
optimizing the FoldingFrodo protocol as part of an effort to further reduce computational
and communication overheads. The goal is to eventually develop and publish a paper
detailing these improvements and benchmarking the protocol against state-of-the-art
PIR systems.

In addition, PIR remains a central focus of my research interests, as I aim to explore
its intersections with other fields, such as privacy-preserving machine learning, secure
multiparty computation, and quantum-resilient cryptography. The work presented in this
thesis will serve as a strong foundation for future projects, contributing to the broader
goal of enabling secure, efficient, and privacy-preserving access to sensitive data in diverse
application domains.

It is hoped that the findings and implementations presented here will serve as a valuable
resource not only for myself but also for other researchers in the field. By addressing current
challenges and identifying promising directions for future work, this thesis contributes

64

8 | CONCLUSION

to the collective effort of advancing privacy-preserving technologies for the benefit of
individuals and organizations in an increasingly data-driven world.

65

Annex A

An overview of the FrodoPIR

protocol

FrodoPIR (Davidson et al., 2022) implementation demonstrates its practicality and
scalability:

- Server Preprocessing: The server preprocesses the database into a compressed
matrix format using a global public seed and a pseudorandom generator. This reduces
the storage size to approximately 𝑚/𝜆, where 𝑚 is the database size and 𝜆 is the
security parameter.

- Client Query Generation: Clients generate encrypted query vectors using the
preprocessed parameters. The query vectors appear uniformly random to the server,
preserving client privacy.

- Server Response and Client Decryption: The server performs efficient matrix-
vector multiplications to respond to client queries. The client decrypts the response
using precomputed parameters to retrieve the desired database entry.

In this annex, the FrodoPIR protocol is described in detail as exactly in (Davidson
et al., 2022), including the setup, preprocessing, and online phases.

A.1 FrodoPIR Scheme

The protocol consists of 5 parts, where:

- Offline

1. In the offline phase, the server interprets the database as a matrix and applies
a compression function to reduce its size, creating a global parameter. This
compression function reduces the size of the DB by𝑚/𝜆, where 𝜆 is the security
parameter and 𝑚 is the number of elements in the DB. Therefore, note that the
parameter is not linear in the size of the DB.

66

ANNEX A

2. Also in the offline phase, the client downloads the public parameters and
computes 𝑐 sets of preprocessed query parameters.

- Online

1. In the online phase, the client uses a set of preprocessed query parameters to
create the encrypted query vector and sends it to the server.

2. Still in the online phase, the server responds to this query by multiplying the
query vector with the DB matrix.

3. Finally, the client returns the result by decrypting the response using the
preprocessed query parameters.

A.1.1 Setup

Let  be the server containing the database DB that each client tries to access. The
database DB is a vector of 𝑚 elements of 𝑤 bits. Each entry is associated with an index 𝑖
that corresponds to a position in the vector. For now, let’s assume that the client knows
which index it would like to query during the online phase of the protocol. We assume that
there are 𝐶 clients making a maximum of 𝑐 queries to the database DB. Note that the LWE
instance is used: let 𝑛 be the dimension and 𝑞 the modulus, let 𝜌 be the number of bits
within each entry of the DB matrix, where 0 < 𝜌 < 𝑞. Let 𝜒 be the uniform distribution over
{−1, 0, 1}, let 𝜆 be the security parameter, and use PRG(𝜇, 𝑥, 𝑦, 𝑞) to denote a pseudorandom
generator that uses a seed 𝜇 ← {0, 1}𝜆 in the matrix ℤ𝑥×𝑦

𝑞 . Note that 𝜔 = ⌈𝑤/𝑙𝑜𝑔(𝜌)⌉

A.1.2 Preprocessing phase

1. Server Setup: The server constructs the database with m elements and samples the
seed 𝜇 ∈ {0, 1}𝜆

2. Server Preprocessing: Here the server derives the matrix

𝑨 ← 𝑃𝑅𝐺(𝜇, 𝑛, 𝑚, 𝑞),

and returns
𝑫 ← 𝑝𝑎𝑟𝑠𝑒(𝐷𝐵, 𝜌),

where the parse function encodes the database into a matrix

𝑫 ∈ ℤ𝑚×𝜔
𝜌 .

To generate the public parameters, the server runs

𝑴 ← 𝑨 ⋅ 𝑫

and publishes the pair (𝜇,𝑴).

3. Client Preprocessing: Each client downloads the pair (𝜇,𝑴) and runs

𝑨 ← 𝑃𝑅𝐺(𝜇, 𝑛, 𝑚, 𝑞).

A.1 | FRODOPIR SCHEME

67

The client then samples c vectors 𝒔𝒋 ← (𝜒)𝑛 and 𝒆𝒋 ← (𝜒)𝑚.

Finally, it performs:
𝒃𝒋 ← 𝒔𝑻𝒋 ⋅ 𝑨 + 𝒆𝑻

𝒋 ∈ ℤ𝑚
𝑞

and
𝒄𝒋 ← 𝒔𝒋𝑇 ⋅ 𝑴 ∈ ℤ𝜔

𝑞

and stores the pair 𝑿 = (𝒃𝒋 , 𝒄𝒋)

A.1.3 Online phase

1. Client query generation (FPIR.query): For the index i that the client wants to
query, the client generates a vector

𝒇𝒊 = (0, … , 0, 𝑞/𝑝, 0, … , 0)

that is all zeros, except where 𝒇𝒊[𝑖] = 𝑞/𝑝. The client then extracts a pair (𝒃, 𝒄) from
the internal state st and computes

𝒃̃ ← 𝒃 + 𝒇𝒊

and sends this 𝒃̃ to the server

2. Server response (FPIR.respond): The server receives 𝒃̃ from the client and re-
sponds with

𝒄̃ ← 𝒃̃𝑻 ⋅ 𝑫

3. Client postprocessing (FPIR.process): The client receives 𝒄̃ and extracts

𝒙 ← ⌊𝒄̃ − 𝒄⌉𝜌

69

Annex B

Pseudocodes for FoldingFrodoPIR

In this annex, we present the pseudocodes for the FoldingFrodoPIR protocol.

Program B.1 Server Preprocessing.

1 function server_preprocessing(n, sqrt_m, q, D, mu)
2 A ← PRG(mu, n, sqrt_m, q) ⊳ Generate matrix A pseudorandomly
3 M ← zero_matrix(n, sqrt_m) ⊳ Initialize M with zeros
4 for i ← 1 to n do

5 for j ← 1 to sqrt_m do

6 for k ← 1 to sqrt_m do

7 M[i][j] ← (M[i][j] + A[i][k] ∗ D[k][j]) mod q
8 end

9 end

10 end

11 return M, mu
12 end

Program B.1: "Código"

Program B.2 Client Preprocessing.

1 function client_preprocessing(n, sqrt_m, q, C)
2 precomputed_data ← empty_list()
3 for query ← 1 to C do

4 s ← generate_secret(n) ⊳ Generate secret vector
5 e ← generate_error(sqrt_m) ⊳ Generate error vector
6 b ← (transpose(s) ∗ A + transpose(e)) mod q
7 c ← (transpose(s) ∗ M) mod q
8 append (b, c) to precomputed_data
9 end

10 return precomputed_data

cont ⟶

70

ANNEX B

⟶ cont
11 end

Program B.2: "Código"

Program B.3 Query Generation.

1 function query_generation(i, j, sqrt_m, q, t)
2 f_i ← zero_vector(sqrt_m)
3 f_j ← zero_vector(sqrt_m)
4 f_i[i] ← floor(q / t)
5 f_j[j] ← floor(q / t)
6 hat_b ← empty_list()
7 for k ← 1 to sqrt_m do

8 hat_b[k] ← Paillier.enc(f_j[k]) ⊳ Encrypt using Paillier
9 end

10 return (f_i, hat_b)
11 end

Program B.3: "Código"

Program B.4 Server Response.

1 function server_response(D, tilde_b, hat_b, q)
2 tilde_c ← zero_vector(sqrt_m)
3 for k ← 1 to sqrt_m do

4 for l ← 1 to sqrt_m do

5 tilde_c[k] ← (tilde_c[k] + tilde_b[l] ∗ D[l][k]) mod q
6 end

7 end

8 hat_s ← Paillier.enc(1) ⊳ Initialize encrypted response
9 for k ← 1 to sqrt_m do

10 temp ← Paillier.mul(hat_b[k], tilde_c[k])
11 hat_s ← Paillier.add(hat_s, temp)
12 end

13 return hat_s
14 end

Program B.4: "Código"

Program B.5 Client Decryption.

1 function client_decryption(hat_s, q, t)
2 y ← Paillier.dec(hat_s) ⊳ Decrypt server response
3 result ← round((t ∗ y) / q) ⊳ Scale and round result
4 return result

cont ⟶

B | PSEUDOCODES FOR FOLDINGFRODOPIR

71

⟶ cont
5 end

Program B.5: "Código"

73

References

[Aguilar-Melchor et al. 2014] Carlos Aguilar-Melchor, Joris Barrier, Laurent
Fousse, and Marc-Olivier Killijian. XPIR: Private Information Retrieval for Every-
one. Cryptology ePrint Archive, Paper 2014/1025. https://eprint.iacr.org/2014/1025.
2014. url: https://eprint.iacr.org/2014/1025 (cit. on pp. x, 2, 32–35).

[Ajtai 1996] Miklós Ajtai. “Generating hard instances of lattice problems”. In: Proceed-
ings of the 28th Annual ACM Symposium on Theory of Computing (STOC). ACM,
1996, pp. 99–108. doi: 10.1145/237814.237838 (cit. on p. 9).

[Ali et al. 2019] Asra Ali et al. Communication–Computation Trade-offs in PIR. Cryptol-
ogy ePrint Archive, Paper 2019/1483. https://eprint.iacr.org/2019/1483. 2019. url:
https://eprint.iacr.org/2019/1483 (cit. on p. 30).

[Angel et al. 2018] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. “Pir
with compressed queries and amortized query processing”. In: 2018 IEEE Sympo-
sium on Security and Privacy (SP). 2018, pp. 962–979. doi: 10.1109/SP.2018.00062
(cit. on pp. x, 2, 30, 35, 38, 45).

[Beimel and Ishai 2001] Amos Beimel and Yuval Ishai. “Information-theoretic private
information retrieval: a unified construction”. In: Automata, Languages and Pro-
gramming. Ed. by Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 912–926. isbn: 978-3-540-
48224-6 (cit. on pp. 1, 28, 29).

[Beimel, Ishai, and Malkin 2000] Amos Beimel, Yuval Ishai, and Tal Malkin. “Re-
ducing the servers computation in private information retrieval: pir with prepro-
cessing”. In: Advances in Cryptology - CRYPTO 2000, 20th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2000, Pro-
ceedings. Vol. 1880. Lecture Notes in Computer Science. Springer, 2000, pp. 55–73.
doi: 10.1007/3-540-44598-6_4. url: https://www.iacr.org/archive/crypto2000/
18800056/18800056.pdf (cit. on p. 2).

https://eprint.iacr.org/2014/1025
https://eprint.iacr.org/2014/1025
https://doi.org/10.1145/237814.237838
https://eprint.iacr.org/2019/1483
https://eprint.iacr.org/2019/1483
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1007/3-540-44598-6_4
https://www.iacr.org/archive/crypto2000/18800056/18800056.pdf
https://www.iacr.org/archive/crypto2000/18800056/18800056.pdf

74

REFERENCES

[Boneh et al. 2005] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-dnf for-
mulas on ciphertexts”. In: Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings.
Vol. 3378. Lecture Notes in Computer Science. Springer, 2005, pp. 325–341. doi:
10.1007/978-3-540-30576-7_18. url: https://iacr.org/archive/tcc2005/3378_325/
3378_325.pdf (cit. on p. 22).

[Brakerski et al. 2014] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
“Leveled fully homomorphic encryption without bootstrapping”. ACM Transac-
tions on Computation Theory (TOCT) 6.3 (2014), 13:1–13:36. doi: 10.1145/2633600
(cit. on p. 22).

[Celi and Davidson 2024] Sofía Celi and Alex Davidson. Call Me By My Name: Simple,
Practical Private Information Retrieval for Keyword Queries. Cryptology ePrint
Archive, Paper 2024/092. https : / /eprint . iacr.org/2024/092. 2024. url: https :
//eprint.iacr.org/2024/092 (cit. on p. 2).

[Chillotti 2018] Ilaria Chillotti. “Vers l’efficacité et la sécurité du chiffrement ho-
momorphe et du cloud computing”. Thèse de doctorat en informatique, préparée
à l’Université de Versailles Saint-Quentin-en-Yvelines, École doctorale n°580 Sci-
ences et Technologies de l’Information et de la Communication (STIC). Thèse
de doctorat. Versailles, France: Université Paris-Saclay, mai 2018. url: https :
//theses.fr/2018SACLV020 (cit. on p. 22).

[B. Chor et al. 1995] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. “Private
information retrieval”. In: Proceedings of the 36th Annual Symposium on Founda-
tions of Computer Science. FOCS ’95. USA: IEEE Computer Society, 1995, p. 41.
isbn: 0818671831 (cit. on p. 1).

[Benny Chor and Gilboa 1997] Benny Chor and Naftali Gilboa. “Computationally
private information retrieval”. In: Proceedings of the 29th Annual ACM Symposium
on Theory of Computing (STOC). ACM, 1997, pp. 304–313. doi: 10.1145/258533.
258594 (cit. on pp. 1, 28, 29).

[Benny Chor, Goldreich, et al. 1998] Benny Chor, Oded Goldreich, Eyal Kushile-
vitz, and Madhu Sudan. “Private information retrieval”. Journal of the ACM
(JACM) 45.6 (1998), pp. 965–981. doi: 10.1145/293347.293350 (cit. on pp. 28, 29).

[Corrigan-Gibbs, Henzinger, et al. 2022] Henry Corrigan-Gibbs, Alexandra Hen-
zinger, and Dmitry Kogan. Single-Server Private Information Retrieval with Sub-
linear Amortized Time. Cryptology ePrint Archive, Paper 2022/081. https://eprint.
iacr.org/2022/081. 2022. url: https://eprint.iacr.org/2022/081 (cit. on pp. x, 2,
37–40).

https://doi.org/10.1007/978-3-540-30576-7_18
https://iacr.org/archive/tcc2005/3378_325/3378_325.pdf
https://iacr.org/archive/tcc2005/3378_325/3378_325.pdf
https://doi.org/10.1145/2633600
https://eprint.iacr.org/2024/092
https://eprint.iacr.org/2024/092
https://eprint.iacr.org/2024/092
https://theses.fr/2018SACLV020
https://theses.fr/2018SACLV020
https://doi.org/10.1145/258533.258594
https://doi.org/10.1145/258533.258594
https://doi.org/10.1145/293347.293350
https://eprint.iacr.org/2022/081
https://eprint.iacr.org/2022/081
https://eprint.iacr.org/2022/081

REFERENCES

75

[Corrigan-Gibbs and Kogan 2020] Henry Corrigan-Gibbs and Dmitry Kogan. “Pri-
vate information retrieval with sublinear online time”. In: Advances in Cryptology
– EUROCRYPT 2020. Ed. by Anne Canteaut and Yuval Ishai. Cham: Springer
International Publishing, 2020, pp. 44–75. isbn: 978-3-030-45721-1 (cit. on pp. 2,
28, 30, 31).

[Daemen and Rijmen 1999] Joan Daemen and Vincent Rijmen. “Aes proposal: rijndael”
(1999). Available at https://csrc.nist.gov/publications/detail/fips/197/final (cit. on
pp. 6, 16).

[Davidson et al. 2022] Alex Davidson, Gonçalo Pestana, and Sofía Celi. FrodoPIR:
Simple, Scalable, Single-Server Private Information Retrieval. Cryptology ePrint
Archive, Paper 2022/981. https : / /eprint . iacr.org/2022/981. 2022. url: https :
//eprint.iacr.org/2022/981 (cit. on pp. x, 2, 3, 32, 39, 41, 42, 45, 65).

[Dijk et al. 2010] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. “Fully homomorphic encryption over the integers”. In: Proceedings
of the 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Vol. 6110. Lecture Notes in Computer
Science (LNCS). Springer, 2010, pp. 24–43. doi: 10.1007/978-3-642-13190-5_2
(cit. on p. 24).

[Fan and Vercauteren 2012] Junfeng Fan and Frederik Vercauteren. “Somewhat
practical fully homomorphic encryption”. In: Proceedings of the 11th International
Conference on Cryptology in India (INDOCRYPT). Vol. 7668. Lecture Notes in
Computer Science (LNCS). Springer, 2012, pp. 1–16. doi: 10.1007/978-3-642-34961-
4_1 (cit. on p. 23).

[J. D. Feo et al. 2019] J. De Feo, D. Jao, and J. Plût. Towards Quantum-Resistant Cryp-
tosystems from Supersingular Isogeny Diffie-Hellman. NIST Submission. 2019. url:
https://sike.org (cit. on p. 17).

[Gentry 2009] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In:
Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing.
STOC ’09. Bethesda, MD, USA: Association for Computing Machinery, 2009,
pp. 169–178. isbn: 9781605585062. doi: 10.1145/1536414.1536440. url: https:
//doi.org/10.1145/1536414.1536440 (cit. on pp. 22, 25).

[Gentry and Ramzan 2005] Craig Gentry and Zulfikar Ramzan. “Single-database pri-
vate information retrieval with constant communication rate”. In: Proceedings of
ICALP. Vol. 3580. Lecture Notes in Computer Science. Springer, 2005, pp. 803–815.
doi: 10.1007/11523468_65 (cit. on p. 30).

[Grover 1996] Lov K. Grover. “A fast quantum mechanical algorithm for database
search”. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC). 1996, pp. 212–219. doi: 10.1145/237814.237866 (cit. on p. 16).

https://csrc.nist.gov/publications/detail/fips/197/final
https://eprint.iacr.org/2022/981
https://eprint.iacr.org/2022/981
https://eprint.iacr.org/2022/981
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-34961-4_1
https://doi.org/10.1007/978-3-642-34961-4_1
https://sike.org
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/11523468_65
https://doi.org/10.1145/237814.237866

76

REFERENCES

[Ham 2021] Jeroen Van Der Ham. “Toward a better understanding of “cybersecurity””.
Digital Threats 2.3 (June 2021). doi: 10.1145/3442445. url: https://doi.org/10.1145/
3442445 (cit. on p. 5).

[Haviv and Regev 2007] Ishay Haviv and Oded Regev. “On the lattice isomorphism
problem”. In: Proceedings of the 22nd Annual IEEE Conference on Computational
Complexity (CCC). IEEE, 2007, pp. 129–140. doi: 10.1109/CCC.2007.11 (cit. on
p. 9).

[Henzinger et al. 2022] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-
Gibbs, Sarah Meiklejohn, and Vinod Vaikuntanathan. One Server for the Price
of Two: Simple and Fast Single-Server Private Information Retrieval. Cryptology
ePrint Archive, Paper 2022/949. https : / /eprint . iacr.org/2022/949. 2022. url:
https://eprint.iacr.org/2022/949 (cit. on p. 2).

[Henzinger et al. 2023] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-
Gibbs, Sarah Meiklejohn, and Vinod Vaikuntanathan. “One server for the
price of two: simple and fast Single-Server private information retrieval”. In:
32nd USENIX Security Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 3889–3905. isbn: 978-1-939133-37-3. url: https://www.
usenix.org/conference/usenixsecurity23/presentation/henzinger (cit. on pp. x, 32,
41, 43, 45).

[Jao and L. D. Feo 2011] David Jao and Luca De Feo. “Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies”. In: Post-Quantum
Cryptography (PQCrypto 2011). Vol. 7071. Lecture Notes in Computer Science.
Springer, 2011, pp. 19–34. doi: 10.1007/978-3-642-25405-5_2 (cit. on p. 17).

[Koblitz 1994] Neal Koblitz. A Course in Number Theory and Cryptography. Vol. 114.
Graduate Texts in Mathematics. Springer, 1994 (cit. on pp. 6, 16).

[Kogan and Corrigan-Gibbs 2021] Dmitry Kogan and Henry Corrigan-Gibbs. “Pri-
vate blocklist lookups with checklist”. In: 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp. 875–892. isbn: 978-
1-939133-24-3. url: https : / /www.usenix . org / conference / usenixsecurity21 /
presentation/kogan (cit. on p. 1).

[Kushilevitz and Ostrovsky 1997] E. Kushilevitz and R. Ostrovsky. “Replication
is not needed: single database, computationally-private information retrieval”.
In: Proceedings 38th Annual Symposium on Foundations of Computer Science. 1997,
pp. 364–373. doi: 10.1109/SFCS.1997.646125 (cit. on p. 30).

[McEliece 1978] Robert J. McEliece. “A public-key cryptosystem based on algebraic
coding theory”. DSN Progress Report 42-44 (1978), pp. 114–116 (cit. on p. 17).

https://doi.org/10.1145/3442445
https://doi.org/10.1145/3442445
https://doi.org/10.1145/3442445
https://doi.org/10.1109/CCC.2007.11
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
https://doi.org/10.1007/978-3-642-25405-5_2
https://www.usenix.org/conference/usenixsecurity21/presentation/kogan
https://www.usenix.org/conference/usenixsecurity21/presentation/kogan
https://doi.org/10.1109/SFCS.1997.646125

REFERENCES

77

[Menon and Wu 2022] Samir Jordan Menon and David J. Wu. Spiral: Fast, High-Rate
Single-Server PIR via FHE Composition. Cryptology ePrint Archive, Paper 2022/368.
https://eprint.iacr.org/2022/368. 2022. url: https://eprint.iacr.org/2022/368 (cit. on
pp. 2, 32).

[Micciancio and Goldwasser 2002] Daniele Micciancio and Shafi Goldwasser.
Complexity of Lattice Problems: a cryptographic perspective. Vol. 671. The Kluwer
International Series in Engineering and Computer Science. Kluwer Academic
Publishers, 2002 (cit. on pp. 9, 10).

[Mittal et al. 2011] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita
Borisov, and Ian Goldberg. “PIR-Tor: scalable anonymous communication using
private information retrieval”. In: 20th USENIX Security Symposium (USENIX
Security 11). San Francisco, CA: USENIX Association, Aug. 2011. url: https :
//www.usenix.org/conference/usenix-security-11/pir-tor-scalable-anonymous-
communication-using-private-information (cit. on p. 1).

[Mughees et al. 2021] Muhammad Haris Mughees, Hao Chen, and Ling Ren. OnionPIR:
Response Efficient Single-Server PIR. Cryptology ePrint Archive, Paper 2021/1081.
https://eprint.iacr.org/2021/1081. 2021. url: https://eprint.iacr.org/2021/1081
(cit. on pp. 2, 31).

[Nielsen and Chuang 2010] Michael A. Nielsen and Isaac L. Chuang. Quantum Com-
putation and Quantum Information: 10th Anniversary Edition. Cambridge Univer-
sity Press, 2010 (cit. on p. 15).

[Paillier 1999] Pascal Paillier. “Public-key cryptosystems based on composite degree
residuosity classes”. In: Advances in Cryptology — EUROCRYPT ’99. Ed. by Jacques
Stern. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 223–238. isbn:
978-3-540-48910-8 (cit. on pp. 4, 11, 20, 45, 46).

[Patel et al. 2018] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private Stateful
Information Retrieval. Cryptology ePrint Archive, Paper 2018/1083. https://eprint.
iacr.org/2018/1083. 2018. doi: 10.1145/3243734.3243821. url: https://eprint.iacr.
org/2018/1083 (cit. on p. 32).

[Peikert 2015] Chris Peikert. A Decade of Lattice Cryptography. Cryptology ePrint
Archive, Paper 2015/939. 2015. url: https://eprint.iacr.org/2015/939 (cit. on pp. 7,
16, 19, 40).

[Pereira and Morais 2021] Hilder V. L. Pereira and Eduardo Morais. “Introdução
à criptografia completamente homomórfica com implementação em Sage”. In:
Minicursos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas
Computacionais. Porto Alegre, Brazil: Sociedade Brasileira de Computação – SBC,
2021. Chap. 1, pp. 1–50. doi: 10.5753/sbc.7165.8 (cit. on p. 25).

https://eprint.iacr.org/2022/368
https://eprint.iacr.org/2022/368
https://www.usenix.org/conference/usenix-security-11/pir-tor-scalable-anonymous-communication-using-private-information
https://www.usenix.org/conference/usenix-security-11/pir-tor-scalable-anonymous-communication-using-private-information
https://www.usenix.org/conference/usenix-security-11/pir-tor-scalable-anonymous-communication-using-private-information
https://eprint.iacr.org/2021/1081
https://eprint.iacr.org/2021/1081
https://eprint.iacr.org/2018/1083
https://eprint.iacr.org/2018/1083
https://doi.org/10.1145/3243734.3243821
https://eprint.iacr.org/2018/1083
https://eprint.iacr.org/2018/1083
https://eprint.iacr.org/2015/939
https://doi.org/10.5753/sbc.7165.8

78

REFERENCES

[Regev 2009] Oded Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. J. ACM 56.6 (Sept. 2009). issn: 0004-5411. doi: 10.1145/1568318.
1568324. url: https://doi.org/10.1145/1568318.1568324 (cit. on pp. 20, 40).

[Rivest et al. 1978] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining
digital signatures and public-key cryptosystems”. Commun. ACM 21.2 (Feb. 1978),
pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342. url: https://doi.org/10.
1145/359340.359342 (cit. on pp. 6, 22).

[Robins 2021] Sinai Robins. A friendly invitation to fourier analysis on polytopes. Apr.
2021. doi: 10.48550/arXiv.2104.06407 (cit. on p. 8).

[Shor 1994] Peter W. Shor. “Algorithms for quantum computation: discrete logarithms
and factoring”. In: Proceedings of the 35th Annual Symposium on Foundations of
Computer Science (FOCS). 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700
(cit. on pp. 5, 16).

[Sion and Carbunar 2007] Radu Sion and Bogdan Carbunar. “On the practicality of
private information retrieval”. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2007. url: https://www.ndss-
symposium.org/ndss2007/practicality-private- information-retrieval/ (cit. on
p. 33).

[Standards and (NIST) 1977] National Institute of Standards and Technology (NIST).
“Data encryption standard (des)”. Federal Information Processing Standards Publi-
cation 46 (1977) (cit. on p. 6).

[Stoneburner et al. 2004] G Stoneburner, Clark Hayden, and Alexis Feringa. Engi-
neering Principles for IT Security (A Baseline for Achieving Security), Revision A. en.
2004-06-21 2004. url: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
151294 (cit. on p. 5).

[Wikipedia contributors 2024a] Wikipedia contributors. Lattice (group). Ac-
cessed: 2024-12-10. 2024 (cit. on pp. vii, 7).

[Wikipedia contributors 2024b] Wikipedia contributors. Lattice problem. Ac-
cessed: 2024-12-10. 2024 (cit. on pp. vii, 9, 10).

[Zhou et al. 2023] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng.
Piano: Extremely Simple, Single-Server PIR with Sublinear Server Computation.
Cryptology ePrint Archive, Paper 2023/452. https://eprint.iacr.org/2023/452. 2023.
url: https://eprint.iacr.org/2023/452 (cit. on p. 32).

https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.48550/arXiv.2104.06407
https://doi.org/10.1109/SFCS.1994.365700
https://www.ndss-symposium.org/ndss2007/practicality-private-information-retrieval/
https://www.ndss-symposium.org/ndss2007/practicality-private-information-retrieval/
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151294
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151294
https://eprint.iacr.org/2023/452
https://eprint.iacr.org/2023/452

	Introduction
	Preliminaries
	Cryptography
	Goals of Cryptography
	Modern Cryptography: Symmetric and Asymmetric Cryptography

	Relevant Mathematical Concepts
	Lattices
	Shortest Vector Problem (SVP)
	Closest Vector Problem (CVP)
	Decisional Composite Residuosity Assumption (DCRA)

	Hardness of Computational Problems in Cryptography
	Considerations about NP-Hardness
	Classical Cryptographic Problems
	Lattice-Based Problems
	Comparison Between Lattice-Based and Classical Problems

	Quantum Camputation and Post-Quantum Cryptography
	Quantum Computation
	Qubit

	Impact of Quantum Computing on Classical Cryptography
	Post-Quantum Cryptography

	Cryptographic Primitives
	Learning With Errors (LWE)
	Ring Learning With Errors (RLWE)
	Homomorphic Encryption
	Paillier Cryptosystem
	Fully Homomorphic Encryption (FHE)
	Fully Homomorphic Encryption Schemes

	Cryptographic Protocols
	Private Information Retrieval
	Informational Theoretical Private Information Retrieval
	Computational Private Information Retrieval
	Stateless Private Information Retrieval
	Stateful Private Information Retrieval

	Previous works
	XPIR: Private Information Retrieval for Everyone XPIR2014
	Core Idea
	Theoretical Contributions
	Challenges Addressed
	Relevance to This Work

	SealPIR: PIR with compressed queries and amortized query processing SealPIR
	Core Idea
	Theoretical Contributions
	Challenges Addressed
	Relevance to This Work

	Single-Server Private Information Retrieval with Sublinear Amortized Time cryptoeprint:2022/081
	Core Idea
	Theoretical Contributions
	Challenges Addressed
	Real World Applications
	Relevance to This Work

	FrodoPIR: Simple, Scalable, Single-Server Private Information Retrieval cryptoeprint:2022/981
	Core Idea
	Theoretical Contributions
	Challenges Addressed
	Relevance to This Work

	SimplePIR - One Server for the Price of Two: Simple and Fast Single-Server Private Information Retrieval 285367
	Core Idea
	Theoretical Contributions
	Challenges Addressed
	Relevance to This work

	FoldingFrodo
	FoldingFrodo with Paillier
	Notations
	Cryptographic Setup
	Preprocessing Phase
	Online Phase
	Correctness
	Correctness of the Server Response (FFPIR.respond)
	Correctness of the Client Postprocessing (FFPIR.process)

	Algorithms and Costs
	Notations
	Costs and Complexities
	Client and Server Costs
	Amortized and Big-O Costs

	Results and Discussion
	Amortization and Parameter Explanation
	Parameters
	Amortization Considerations
	Comparison Methodology
	Comparative Analysis

	Comparison of Function Costs Between FrodoPIR and FFPIR
	Explanation of Function Comparisons

	Discussion

	Conclusion
	Summary of Contributions
	Key Findings
	Challenges and Limitations
	Future Work
	Concluding Remarks

	An overview of the FrodoPIR protocol
	FrodoPIR Scheme
	Setup
	Preprocessing phase
	Online phase

	Pseudocodes for FoldingFrodoPIR
	References

